Jumat, 30 Oktober 2009

tugas

Merkurius adalah planet di terkecil di dalam tata surya dan juga yang terdekat dengan Matahari dengan kala revolusi 88 hari. Kecerahan planet ini berkisar diantara -2 sampai 5,5 dalam magnitudo tampak namun tidak mudah terlihat karena sudut pandangnya dengan matahari kecil (dengan rentangan paling jauh sebesar 28,3 derajat. Merkurius hanya bisa terlihat pada saat subuh atau maghrib. Tidak begitu banyak yang diketahui tentang Merkurius karena hanya satu pesawat antariksa yang pernah mendekatinya yaitu Mariner 10 pada tahun 1974 sampai 1975. Mariner 10 hanya berhasil memetakan sekitar 40 sampai 45 persen dari permukaan planet.
Mirip dengan Bulan, Merkurius mempunyai banyak kawah dan juga tidak mempunyai satelit alami serta atmosfir. Merkurius mempunyai inti besi yang menciptakan sebuah medan magnet dengan kekuatan 0.1% dari kekuatan medan magnet bumi. Suhu permukaan dari Merkurius berkisar antara 90 sampai 700 Kelvin (-180 sampai 430 derajat selsius),
Pengamatan tercatat dari Merkurius paling awal dimulai dari zaman orang Sumeria pada milenium ke tiga sebelum masehi. Bangsa Romawi menamakan planet ini dengan nama salah satu dari dewa mereka, Merkurius (dikenal juga sebagai Hermes pada mitologi Yunani dan Nabu pada mitologi Babilonia). Lambang astronomis untuk merkurius adalah abstraksi dari kepala Merkurius sang dewa dengan topi bersayap diatas caduceus. Orang Yunani pada zaman Hesiod menamai Merkurius Stilbon dan Hermaon karena sebelum abad ke lima sebelum masehi mereka mengira bahwa Merkurius itu adalah dua benda antariksa yang berbeda, yang satu hanya tampak pada saat matahari terbit dan yang satunya lagi hanya tampak pada saat matahari terbenam. Di India, Merkurius dinamai Budha (बुध), anak dari Candra sang bulan. Di budaya Tiongkok, Korea, Jepang dan Vietnam, Merkurius dinamakan "bintang air". Orang-orang Ibrani menamakannya Kokhav Hamah (כוכב חמה), "bintang dari yang panas" ("yang panas" maksudnya matahari). Diameter Merkurius 40% lebih kecil daripada Bumi (4879,4 km), dan 40% lebih besar daripada Bulan. Ukurannya juga lebih kecil (walaupun lebih padat) daripada bulan Jupiter, Ganymede dan bulan Saturnus, Titan.
Struktur Dalam
Dengan diameter sebesar 4879 km di katulistiwa, Merkurius adalah planet terkecil dari empat planet kebumian di Tata Surya. Merkurius terdiri dari 70% logam dan 30% silikat serta mempunyai kepadatan sebesar 5,43 g/cm3 hanya sedikit dibawah kepadatan Bumi. Namun apabila efek dari tekanan gravitasi tidak dihitung maka Merkurius lebih padat dari Bumi dengan kepadatan tak terkompres dari Merkurius 5,3 g/cm3 dan Bumi hanya 4,4 g/cm3.
Kepadatan Merkurius digunakan untuk menduga struktur dalamnya. Kepadatan Bumi yang tinggi tercipta karena tekanan gravitasi, terutamanya di bagian inti. Merkurius namun jauh lebih kecil dan bagian dalamnya tidak terdapat seperti bumi sehingga kepadatannya yang tinggi diduga karena planet tersebut mempunyai inti yang besar dan kaya akan besi. Para ahli bumi menaksir bahwa inti Merkurius menempati 42 % dari volumenya (inti Bumi hanya menempati 17% dari volume Bumi). Menurut riset terbaru, kemungkinan besar inti Merkurius adalah cair.
Mantel setebal 600 km menyelimuti inti Merkurius dan kerak dari Merkurius diduga setebal 100 sampai 200 km. Permukaan merkurius mempunyai banyak perbukitan yang kurus, beberapa mencapai ratusan kilometer panjangnya. Diduga perbukitan ini terbentuk karena inti dan mantel Merkurius mendingin dan menciut pada saat kerak sudah membatu.

Merkurius mengandung besi lebih banyak dari planet lainnya di tata surya dan beberapa teori telah diajukan untuk menjelaskannya. Teori yang paling luas diterima adalah bahwa Merkuri pada awalnya mempunyai perbandingan logam-silikat mirip dengan meteor Kondrit umumnya dan mempunyai massa sekitar 2,25 kali massanya yang sekarang. Namun pada awal sejarah tata surya, merkurius tertabrak oleh sebuah planetesimal berukuran sekitar seperenam dari massanya. Benturan tersebut telah melepaskan sebagian besar dari kerak dan mantel asli Merkurius dan meninggalkan intinya. Proses yang sama juga telah diajukan untuk menjelaskan penciptaan dari Bulan.
Teori yang lain menyatakan bahwa Merkurius mungkin telah terbentuk dari nebula Matahari sebelum energi keluaran Matahari telah stabil. Merkurius pada awalnya mempunyai dua kali dari massanya yang sekarang, namun dengan mengambangnya protomatahari, suhu di sekitar merkuri dapat mencapai sekitar 2500 sampai 3500 Kelvin dan mungkin mencapai 10000 Kelvin. Sebagian besar permukaan Merkurius akan menguap pada temperatur seperti itu, membuat sebuah atmosfir "uap batu" yang mungkin tertiup oleh angin matahari
Teori ketiga mengajukan bahwa mengakibatkan tarikan pada partikel yang darinya Merkurius akan terbentuk sehingga partikel yang lebih ringan hilang dari materi pengimbuhan. Masing-masing dari teori ini memprediksikan susunan permukaan yang berbeda. Dua misi antariksa di masa datang, MESSENGER dan BepiColombo akan menguji teori-teori ini.
















Venus adalah planet terdekat kedua dari matahari setelah Merkurius. Planet ini memiliki radius 6.052 km dan mengelilingi matahari dalam waktu 225 hari. Atmosfer Venus mengandung 97% karbondioksida (CO2) dan 3% nitrogen, sehingga hampir tidak mungkin terdapat kehidupan.
Arah rotasi Venus berlawanan dengan arah rotasi planet-planet lain. Selain itu, jangka waktu rotasi Venus lebih lama daripada jangka waktu revolusinya dalam mengelilingi matahari.
Kandungan atmosfernya yang pekat dengan CO2 menyebabkan suhu permukaannya sangat tinggi akibat efek rumah kaca. Atmosfer Venus tebal dan selalu diselubungi oleh awan. Pakar astrobiologi berspekulasi bahwa pada lapisan awan Venus termobakteri tertentu masih dapat melangsungkan kehidupan.
Bumi adalah planet ketiga dari delapan planet dalam Tata Surya. Diperkirakan usianya mencapai 4,6 milyar tahun. Jarak antara Bumi dengan matahari adalah 149.6 juta kilometer atau 1 AU (ing: astronomical unit). Bumi mempunyai lapisan udara (atmosfer) dan medan magnet yang disebut (magnetosfer) yang melindung permukaan Bumi dari angin matahari, sinar ultraungu, dan radiasi dari luar angkasa. Lapisan udara ini menyelimuti bumi hingga ketinggian sekitar 700 kilometer. Lapisan udara ini dibagi menjadi Troposfer, Stratosfer, Mesosfer, Termosfer, dan Eksosfer.
Lapisan ozon, setinggi 50 kilometer, berada di lapisan stratosfer dan mesosfer dan melindungi bumi dari sinar ultraungu. Perbedaan suhu permukaan bumi adalah antara -70 °C hingga 55 °C bergantung pada iklim setempat. Sehari dibagi menjadi 24 jam dan setahun di bumi sama dengan 365,2425 hari. Bumi mempunyai massa seberat 59.760 milyar ton, dengan luas permukaan 510 juta kilometer persegi. Berat jenis Bumi (sekitar 5.500 kilogram per meter kubik) digunakan sebagai unit perbandingan berat jenis planet yang lain, dengan berat jenis Bumi dipatok sebagai 1.
Bumi mempunyai diameter sepanjang 12.756 kilometer. Gravitasi Bumi diukur sebagai 10 N kg-1 dijadikan unit ukuran gravitasi planet lain, dengan gravitasi Bumi dipatok sebagai 1. Bumi mempunyai 1 satelit alami yaitu Bulan. 70,8% permukaan bumi diliputi air. Udara Bumi terdiri dari 78% nitrogen, 21% oksigen, dan 1% uap air, karbondioksida, dan gas lain.
Bumi diperkirakan tersusun atas inti dalam bumi yang terdiri dari besi nikel beku setebal 1.370 kilometer dengan suhu 4.500 °C, diselimuti pula oleh inti luar yang bersifat cair setebal 2.100 kilometer, lalu diselimuti pula oleh mantel silika setebal 2.800 kilometer membentuk 83% isi bumi, dan akhirnya sekali diselimuti oleh kerak bumi setebal kurang lebih 85 kilometer.
Kerak bumi lebih tipis di dasar laut yaitu sekitar 5 kilometer. Kerak bumi terbagi kepada beberapa bagian dan bergerak melalui pergerakan tektonik lempeng (teori Continental Drift) yang menghasilkan gempa bumi.
Titik tertinggi di permukaan bumi adalah gunung Everest setinggi 8.848 meter, dan titik terdalam adalah palung Mariana di samudra Pasifik dengan kedalaman 10.924 meter. Danau terdalam adalah Danau Baikal dengan kedalaman 1.637 meter, sedangkan danau terbesar adalah Laut Kaspia dengan luas 394.299 km2.
Komposisi dan struktur
Bumi adalah sebuah planet kebumian, yang artinya terbuat dari batuan, berbeda dibandingkan gas raksasa seperti Jupiter. Planet ini adalah yang terbesar dari empat planet kebumian, dalam kedua arti, massa dan ukuran. Dari keempat planet kebumian, bumi juga memiliki kepadatan tertinggi, gravitasi permukaan terbesar, medan magnet terkuat dan rotasi paling cepat. Bumi juga merupakan satu-satunya planet kebumian yang memiliki lempeng tektonik yang aktif.
Bentuk
Bentuk planet Bumi sangat mirip dengan bulatan gepeng (oblate spheroid), sebuah bulatan yang tertekan ceper pada orientasi kutub-kutub yang menyebabkan buncitan pada bagian katulistiwa. Buncitan ini terjadi karena rotasi bumi, menyebabkan ukuran diameter katulistiwa 43 km lebih besar dibandingkan diameter dari kutub ke kutub. Diameter rata-rata dari bulatan bumi adalah 12.742 km, atau kira-kira 40.000 km/π. Karena satuan meter pada awalnya didefinisikan sebagai 1/10.000.000 jarak antara katulistiwa ke kutub utara melalui kota Paris, Prancis.
Topografi lokal sedikit bervariasi dari bentuk bulatan ideal yang mulus, meski pada skala global, variasi ini sangat kecil. Bumi memiliki toleransi sekitar satu dari 584, atau 0,17% dibanding bulatan sempurna (reference spheroid), yang lebih mulus jika dibandingkan dengan toleransi sebuah bola biliar, 0,22%. Lokal deviasi terbesar pada permukaan bumi adalah gunung Everest (8.848 m di atas permukaan laut) dan Palung Mariana (10.911 m di bawah permukaan laut). Karena buncitan katulistiwa, bagian bumi yang terletak paling jauh dari titik tengah bumi sebenarnya adalah gunung Chimborazo di Ekuador.
Proses alam endogen/tenaga endogen adalah tenaga bumi yang berasal dari dalam bumi. Tenaga alam endogen bersifat membangun permukaan bumi ini. Tenaga alam eksogen berasal dari luar bumi dan bersifat merusak. Jadi kedua tenaga itulah yang membuat berbagai macam relief di muka bumi ini seperti yang kita tahu bahwa permukaan bumi yang kita huni ini terdiri atas berbagai bentukan seperti gunung, lembah, bukit, danau, sungai, dsb. Adanya bentukan-bentukan tersebut, menyebabkan permukaan bumi menjadi tidak rata. Bentukan-bentukan tersebut dikenal sebagai relief bumi.

Komposisi kimia
F. W. Clarke's Table kerak oksida
Senyawa Formula Komposisi
silika
SiO2 59,71%
alumina
Al2O3 15,41%
kapur
CaO 4,90%
Magnesia
MgO 4,36%
sodium oxide
Na2O 3,55%
iron(II) oxide
FeO 3,52%
potasium oxida
K2O 2,80%
besi(III) oxida
Fe2O3 2,63%
air
H2O 1,52%
titanium dioxida
TiO2 0,60%
phosphorus pentoxida
P2O5 0,22%
Total 99,22%
Massa bumi kira-kira adalah 5,98×1024 kg. Kandungan utamanya adalah besi(32,1%), oksigen (30,1%), silikon (15,1%), magnesium (13,9%), sulfur (2,9%), nikel (1,8%), kalsium (1,5%), and aluminium (1,4%); dan 1,2% selebihnya terdiri dari berbagai unsur-unsur langka. Karena proses pemisahan massa, bagian inti bumi dipercaya memiliki kandungan utama besi (88,8%), dan sedikit nikel (5,8%), sulfur (4,5%), dan selebihnya kurang dari 1% unsur langka.[10]
Ahli geokimia F. W. Clarke memperhitungkan bahwa sekitar 47% kerak bumi terdiri dari oksigen. Batuan-batuan paling umum yang terdapat di kerak bumi hampir semuanya adalah oksida (oxides); klorin, sulfur, dan florin adalah kekecualian dan jumlahnya di dalam batuan biasanya kurang dari 1%. Oksida-oksida utama adalah silika, alumina, oksida besi, kapur, magnesia, potas dan soda. Fungsi utama silika adalah sebagai asam, yang membentuk silikat. Ini adalah sifat dasar dari berbagai mineral batuan beku yang paling umum. Berdasarkan perhitungan dari 1,672 analisa berbagai jenis batuan, Clarke menyimpulkan bahwa 99,22% batuan terdiri dari 11 oksida (lihat tabel kanan). Konstituen lainnya hanya terjadi dalam jumlah yang kecil. [note 3]
Lapisan bumi
Menurut komposisi (jenis dari materialnya), Bumi dapat dibagi menjadi lapisan-lapisan sebagai berikut :
• Kerak Bumi
• Mantel Bumi
Mantel bumi terletak di antara kerak dan inti luar bumi. Mantel bumi merupakan batuan yang mengandung magnesium dan silikon. Suhu pada mantel bagian atas ±1300 °C-1500 °C dan suhu pada mantel bagian dalam ±1500 °C-3000 °C
• Inti Bumi
Sedangkan menurut sifat mekanik (sifat dari material) -nya, bumi dapat dibagi menjadi lapisan-lapisan sebagai berikut :
• Litosfir
• Astenosfir
• Mesosfir
• Inti Bumi bagian luar
Inti bumi bagian luar merupakan salah satu bagian dalam bumi yang melapisi inti bumi bagian dalam. Inti bumi bagian luar mempunyai tebal 2250 km dan kedalaman antara 2900-4980 km. Inti bumi bagian luar terdiri atas besi dan nikel cair dengan suhu 3900 °C
• Inti Bumi bagian dalam
Inti bumi bagian dalam merupakan bagian bumi yang paling dalam atau dapat juga disebut inti bumi. inti bumi mempunyai tebal 1200km dan berdiameter 2600km. inti bumi terdiri dari besi dan nikel berbentuk padat dengan temperatur dapat mencapai 4800 °C
Mars adalah planet terdekat keempat dari Matahari. Namanya diambil dari nama Dewa Yunani kuno untuk perang. Namun planet ini juga dikenal sebagai planet merah karena penampakannya yang kemerah-merahan.
Lingkungan Mars lebih bersahabat bagi kehidupan dibandingkan keadaan Planet Venus. Namun begitu, keadaannya tidak cukup ideal untuk manusia. Suhu udara yang cukup rendah dan tekanan udara yang rendah, ditambah dengan komposisi udara yang sebagian besar karbondioksida, menyebabkan manusia harus menggunakan alat bantu pernapasan jika ingin tinggal di sana. Misi-misi ke planet merah ini, sampai penghujung abad ke-20, belum menemukan jejak kehidupan di sana, meskipun yang amat sederhana.
Planet ini memiliki 2 buah satelit, yaitu Phobos dan Deimos. Planet ini mengorbit selama 687 hari dalam mengelilingi matahari. Planet ini juga berotasi. Kala rotasinya 24,62 jam.
Dalam mitologi Yunani, Mars identik dengan dewa perang, yaitu Aries, putra dari Zeus dan Hera.
Di planet Mars, terdapat sebuah fitur unik di daerah Cydonia Mensae. Fitur ini merupakan sebuah perbukitan yang bila dilihat dari atas nampak sebagai sebuah wajah manusia. Banyak orang yang menganggapnya sebagai sebuah bukti dari peradaban yang telah lama musnah di Mars, walaupun di masa kini, telah terbukti bahwa fitur tersebut hanyalah sebuah kenampakan alam biasa.
Ceres adalah sebuah planet kerdil yang terletak di Sabuk Asteroid. Ceres ditemukan pada 1 Januari 1801 oleh Giuseppe Piazzi. Awalnya saat ditemukan Ceres dianggap sebagai sebuah planet, namun setengah abad kemudian dan selama 150 tahun selanjutnya, Ceres diklasifikasikan sebagai sebuah asteroid. Pada 24 Agustus 2006, Persatuan Astronomi Internasional memutuskan untuk mengubah status Ceres menjadi "planet katai".
Ceres mempunyai massa sebesar 9,45±0,04 × 1020 kg. Dengan diameter sekitar 950 km, Ceres adalah benda angkasa terbesar di sabuk asteroid utama.
Yupiter atau Jupiter adalah planet terdekat kelima dari matahari setelah Merkurius, Venus, Bumi, dan Mars.
Jarak rata-rata antara Jupiter dan Matahari adalah 778,3 juta km. Jupiter adalah planet terbesar dan terberat dengan diameter 14.980 km dan memiliki massa 318 kali massa bumi. Periode rotasi planet ini adalah 9,8 jam, sedangkan periode revolusi adalah 11,86 tahun.
Di permukaan planet ini terdapat bintik merah raksasa. Atmosfer Jupiter mengandung hidrogen (H), helium (He), metana (CH4), dan amonia (NH3). Suhu di permukaan planet ini berkisar dari -140oC sampai dengan 21oC. Seperti planet lain, Jupiter tersusun atas unsur besi dan unsur berat lainnya. Jupiter memiliki 63 satelit, di antaranya Io, Europa, Ganymede, Callisto (Galilean moons).
Saturnus adalah sebuah planet di tata surya yang dikenal juga sebagai planet bercincin. Jarak Saturnus sangat jauh dari Matahari, karena itulah Saturnus tampak tidak terlalu jelas dari Bumi. Saturnus berevolusi dalam waktu 29,46 tahun. Setiap 378 hari, Bumi, Saturnus, dan Matahari akan berada dalam satu garis lurus. Selain berevolusi, Saturnus juga berotasi dalam waktu yang sangat singkat, yaitu 10 jam 14 menit.
Saturnus memiliki kerapatan yang rendah karena sebagian besar zat penyusunnya berupa gas dan cairan. Inti Saturnus diperkirakan terdiri dari batuan padat dengan atmosfer tersusun atas gas amonia dan metana, hal ini tidak memungkinkan adanya kehidupan di Saturnus.
Cincin Saturnus sangat unik, terdiri beribu-ribu cincin yang mengelilingi planet ini. Bahan pembentuk cincin ini masih belum diketahui. Para ilmuwan berpendapat, cincin itu tidak mungkin terbuat dari lempengan padat karena akan hancur oleh gaya sentrifugal. Namun, tidak mungkin juga terbuat dari zat cair karena gaya sentrifugal akan mengakibatkan timbulnya gelombang. Jadi, sejauh ini, diperkirakan yang paling mungkin membentuk cincin-cincin itu adalah bongkahan-bongkahan es meteorit.
Hingga 2006, Saturnus diketahui memiliki 56 buah satelit alami. Tujuh diantaranya cukup masif untuk dapat runtuh berbentuk bola di bawah gaya gravitasinya sendiri. Mereka adalah Mimas, Enceladus, Tethys, Dione, Rhea, Titan (Satelit terbesar dengan ukuran lebih besar dari planet Merkurius), dan Iapetus.
Sejarah
Penemuan
Uranus telah diamati pada banyak kesempatan sebelum penemuannya sebagai planet, namun ia dianggap secara salah sebagai bintang. Pengamatan yang tercatat paling awal adalah pada tahun 1690 saat John Flamsteed mengamati planet itu sedikitnya enam kali, mengkatalogkannya sebagai 34 Tauri. Astronom Perancis, Pierre Lemonnier, mengamati Uranus setidaknya dua puluh kali antara tahun 1750 dan 1769,[16] termasuk pada empat malam berturut-turut.
Sir William Herschel mengamati planet itu pada 13 Maret 1781 saat berada di taman di rumahnya di 19 New King Street di kota Bath, Somerset (sekarang Herschel Museum of Astronomy),[17] namun mulanya melaporkannya (pada 26 April 1781) sebagai sebuah "komet".[18] Herschel "melakukan serangkaian pengamatan terhadap paralaks pada bintang-bintang yang tetap",[19] menggunakan teleskop yang ia desain sendiri.
Dia mencatat dalam jurnalnya "Pada kuartil dekat ζ Tauri … bisa merupakan bintang Nebula atau sebuah komet".[20] Tanggal 17 Maret, dia mencatat, "Aku mencari Komet atau Bintang Nebula itu dan menemukan bahwa ia adalah sebuah Komet, karena ia berubah letaknya".[21] Saat dia mempresentasikan penemuannya pada Royal Society, ia terus menegaskan bahwa dia telah menemukan sebuah komet sementara secara implisit membandingkannya pada planet:[22]
“ Kekuatan yang aku miliki saat pertama kali Aku melihat komet itu adalah 227. Dari pengamatan Aku tahu bahwa diameter dari bintang-bintang diam tidak secara proporsional membesar dengan daya yang lebih besar, sebagaimana planet; oleh karena itu sekarang aku menyetel kekuatannya pada 460 dan 932, dan menemukan bahwa diameter komet itu naik sebanding dengan kekuatannya, sebagaimana mestinya, dengan perkiraan bahwa ia bukan bintang diam, sementara diameter bintang-bintang yang kepadanya aku membandingkan tidak meningkat dengan rasio yang sama. Lebih dari itu, komet itu diperbesar jauh di luar apa yang akan terjadi pada cahayanya, nampak kabur dan kurang-jelas dengan kekuatan yang besar ini, sementara bintang-bintang itu mempertahankan kilau dan kekhasannya dari ribuan pengamatan aku tahu mereka akan mempertahankannya. Kelanjutannya menunjukkan bahwa dugaanku berdasar baik, ini terbukti adalah Komet yang belakangan ini kami amati. ”
Herschel memberitahu Astronomer Royal, Nevil Maskelyne, akan penemuannya dan menerima jawaban bingung ini darinya pada tanggal 23 April 23: "Aku tidak tahu menyebutnya apa. Mungkin ia planet reguler yang bergerak pada orbit yang hampir melingkar pada Matahari karena Komet bergerak pada elips yang sangat eksentrik. Aku belum melihat koma atau ekor apapun padanya".[23]
Sementara Herschel secara hati-hati terus menggambarkan objek baru ini sebagai sebuah komet, para astronom lain sudah mulai menduga secara lain. Astronom Rusia Anders Johan Lexell memperkirakan jaraknya 18 kali jarak Matahari dari Bumi, dan belum satu kometpun yang diamati dengan perihelion empat kali jarak Bumi-Matahari.[24] Astronom Berlin Johann Elert Bode mendeskripsikan penemuan Herschel sebagai "bintang bergerak yang dapat dianggap hingga sekarang ini objek tak diketahui mirip planet yang berkeliling di luar orbit Saturnus".[25] Bode menyimpulkan bahwa orbitnya yang hampir berbentuk lingkaran lebih mirip sebuah planet daripada komet.[26]
Objek itu dengan segera diterima secara universal sebagai sebuah planet. Tahun 1783, Herschel sendiri mengakui fakta ini kepada direktur Royal Society Joseph Banks: "Dengan pengamatan dari para Astronom paling terkenal di Eropa nampaknya bintang baru itu, yang membuatku dihormati karena kutunjukkan kepada mereka pada Maret 1781, adalah sebuah Planet Primer pada Tata Surya kita."[27] Untuk mengakui pencapaian ini, Raja George III memberi Herschel gaji tetap tahunan £200 dengan syarat ia pindah ke Windsor sehingga Keluarga Kerajaan mendapat kesempatan untuk melihat melalui teleskopnya.[28]
Penamaan
Maskelyne meminta Herschel untuk "do the astronomical world the faver [demikianlah, 'membantu dunia astronomi'] untuk memberi nama planetmu, yang sepenuhnya milikmu, & yang kami merasa berhutang budi padamu atas penemuannya."[29] Untuk menjawab permintaan Maskelyne, Herschel memutuskan untuk menamai objek itu Georgium Sidus (Bintangnya George), atau "Planet Georgian" untuk menghormati penyokong dirinya yang baru, Raja George III.[30] Dia menjelaskan keputusan ini dalam sebuah surat kepada Joseph Banks:[27]


William Herschel, penemu Uranus
“ Pada masa dahulu kala sebutan Merkurius, Venus, Mars, Jupiter dan Saturnus diberikan kepada planet-planet tersebut, sebagai nama pahlawan dan dewa mereka. Pada masa sekarang yang eranya lebih filosofis sulit memungkinkan untuk mendapat pengganti metode yang sama dan menyebutnya Juno, Pallas, Apollo atau Minerva, untuk menjadi nama bagi benda langit kita yang baru. Pertimbangan pertama berupa peristiwa tertentu, atau kejadian luar biasa, nampaknya merupakan kronologinya: jika di masa depan akan ditanyakan, kapan Planet yang terakhir-ditemukan ini ditemukan? Akan menjadi jawaban yang sangat memuaskan mengatakan, 'Pada masa pemerintahan Raja George Ketiga. ”
Nama yang diusulkan Herschel tidak populer di luar Britania, dan beberapa alternatif segera diusulkan. Astronom Jérôme Lalande mengusulkan planet itu dinamai Herschel untuk menghormati penemunya.[31] Namun, Bode, memilih Uranus, versi Latin dewa langit Yunani, Ouranos. Bode berargumen bahwa seperti Saturnus yang merupakan ayah dari Jupiter, planet baru itu mesti diberi nama dari nama ayah Saturnus.[28][32][33] Pada tahun 1789, kolega Bode dari Royal Academy, Martin Klaproth menamai unsur yang baru ditemukan dengan "uranium" untuk mendukung pilihan Bode.[34] Pada akhirnya, saran Bode menjadi yang paling luas digunakan, dan menjadi universal pada 1850 saat HM Nautical Almanac Office, yang terakhir yang tidak menggunakannya, beralih dari menggunakan Georgium Sidus kepada Uranus.[32]
Tata Nama
Pengucapan nama Uranus dalam bahasa Inggris yang disukai di antara para astronom adalah /ˈjʊərənəs/, dengan tekanan pada suku kata pertama seperti dalam bahasa Latin Ūranus;[35] kontras dengan bahasa sehari-hari /jʊˈreɪnəs/, dengan tekanan pada suku kata kedua dan a panjang, meskipun dua-duanya dianggap dapat diterima. Karena pada daerah yang berbahasa Inggris, ū•rā′•nəs kedengaran seperti "your anus" ('anusmu'), ejaan sebelumnya juga menyembunyikan malu: seperti yang Dr. Pamela Gay, astronom di Southern Illinois University, sebutkan dalam siarannya, untuk menghindari "dikerjai oleh anak kecil sekolahan ... saat ragu-ragu, jangan menekankan apapun dan hanya katakan ūr′•ə•nəs. Dan merekapun lari dengan cepat."[36]
Uranus merupakan satu-satunya planet yang namanya berasal dari tokoh dari mitologi Yunani bukan dari mitologi Romawi. Adjektif dari Uranus adalah "Uranian". Simbol astronomisnya adalah . Simbol itu merupakan gabungan dari simbol untuk Mars dan Matahari karena Uranus adalah Langit dalam mitologi Yunani, yang dianggap didominasi oleh gabungan kekuatan Matahari dan Mars.[37] Simbol astrologisnya adalah , disarankan oleh Lalande tahun 1784. Dalam sebuah surat kepada Herschel, Lalande mendeskripsikannya sebagai "un globe surmonté par la première lettre de votre nom" ("sebuah globe yang diatasnya adalah huruf pertama namamu").[31] Dalam bahasa Cina, Jepang, Korea, dan Vietnam, nama planet Uranus secara literal dialihbahasakan sebagai bintang raja langit (天王星).[38][39]


Orbit dan rotasi


Gambar teleskop Hubble dari Uranus menunjukkan pita awan, cincin, dan bulan-bulan
Uranus mengitari Matahari sekali dalam 84 tahun. Jarak rata-ratanya dari Matahari kira-kira 3 milyar km (sekitar 20 SA). Intensitas sinar matahari di Uranus sekitar 1/400 yang ada di Bumi.[40] Elemen orbitnya dihitung pertama kali tahun 1783 oleh Pierre-Simon Laplace.[24] Dengan berjalannya waktu, perbedaan mulai terlihat antara orbit yang diprediksikan dan yang diamati, dan pada tahun 1841, John Couch Adams pertama kali mengajukan bahwa perbedaan itu mungkin disebabkan sentakan gravitasi oleh sebuah planet yang tidak terlihat. Pada tahun 1845, Urbain Le Verrier mulai riset mandirinya sendiri tentang orbit Uranus. Pada 23 September 1846, Johann Gottfried Galle menemukan lokasi satu planet baru, yang kemudian diberinama Neptunus, hampir pada posisi yang diprediksikan oleh Le Verrier.[41]
Periode rotasi interior Uranus adalah 17 jam, 14 menit. Akan tetapi, seperti semua raksasa gas lainnya, atmosfer atasnya mengalami angin badai yang sangat kuat pada arah rotasi. Akibatnya, pada beberapa garis lintang, seperti dua per tiga lintang dari khatulistiwa ke kutub selatan, fitur-fitur atmosfer itu yang nampak bergerak jauh lebih cepat, menjadikan rotasi penuhnya sekecil 14 jam.[42]
Kemiringan sumbu
Sumbu rotasi Uranus terletak pada sisinya dipandang dari bidang Tata Surya, dengan kemiringan sumbu 97,77°. Ini memberinya perubahan musim yang sama sekali tidak seperti planet utama lain. Planet-planet lain dapat dibayangkan sebagai gasing yang berputar termiring-miring relatif terhadap bidang tata surya, sementara Uranus berotasi lebih seperti bola yang menggelinding termiring-miring. Berdekatan dengan waktu solstis Uranian, satu kutubnya menghadap Matahari terus-menerus sedangkan kutub lainnya menghadap ke arah sebaliknya. Hanya segaris daerah sempit di sekitar ekuator yang mengalami pergantian siang-malam dengan cepat, namun dengan Matahari sangat rendah dari kaki langit seperti di daerah kutub di Bumi. Pada sisi orbit Uranus yang lain orientasi kutub-kutubnya terhadap Matahari adalah sebaliknya. Tiap kutub terus-menerus disinari Matahari sekitar 42 tahun, diikuti dengan 42 tahun yang gelap.[43] Dekat waktu ekuinoks, Matahari menghadap ekuator Uranus memberi periode pergantian siang-malam sama seperti yang terlihat pada kebanyakan planet lain. Uranus mencapai ekuinoks terkininya pada tanggal 7 December 2007.[44][45]
Belahan Utara Tahun Belahan Selatan
Solstis Musim Dingin 1902, 1986 Solstis Musim Panas
Ekuinoks Musim Semi 1923, 2007 Ekuinoks Musim Gugur
Solstis Musim Panas 1944, 2028 Solstis Musim Dingin
Ekuinoks Musim Gugur 1965, 2049 Ekuinoks Musim Semi
Salah satu hasil orientasi sumbu rotasi ini adalah bahwa, rata-rata dalam satu tahun, daerah kutub menerima masukan energi yang lebih besar dari Matahari daripada daerah ekuatornya. Namun demikian, Uranus lebih panas ekuatornya daripada kutubnya. Mekanisme yang mendasari yang menyebabkan hal ini tidak diketahui. Alasan tidak biasanya kemiringan sumbu Uranus juga tidak diketahui pasti, namun perkiraan umum adalah bahwa selama pembentukan Tata Surya, protoplanet seukuran Bumi bertubrukan dengan Uranus, menyebabkan orientasinya yang miring tersebut.[46] Kutub selatan Uranus menunjuk hampir kepada Matahari saat terbang dekat Voyager 2 tahun 1986. Penyebutan kutub ini sebagai "selatan" menggunakan definisi yang sekarang disetujui oleh Persatuan Astronomi Internasional, yaitu bahwa kutub utara suatu planet atau satelit adalah kutub yang menunjuk ke atas bidang invariabel Tata Surya, kemanapun arah planet itu berputar.[47][48] Akan tetapi, perjanjian yang berbeda kadang digunakan, di mana kutub utara dan selatan suatu benda didefinisikan menurut aturan tangan kanan sehubungan dengan arah rotasi.[49] Menurut sistem koordinat yang belakangan ini, kutub utara Uranus adalah yang disinari Matahari pada tahun 1986.
Kecemerlangan
Dari tahun 1995 sampai 2006, magnitudo tampak Uranus berfluktuasi antara +5,6 dan +5,9; menempatkannya hampir pada batas daya lihat mata telanjang pada +6.5.[7] Diameter angularnya antara 3,4 dan 3,7 detik busur, dibandingkan dengan 16 hingga 20 detik busur untuk Saturnus dan 32 sampai 45 detik busur untuk Jupiter.[7] Saat oposisi, Uranus terlihat dengan mata telanjang dalam langit yang gelap dan tidak terpolusi cahaya, dan menjadi sasaran yang mudah bahkan dalam kondisi perkotaan dengan teropong.[5] Dalam teleskop amatir yang lebih besar dengan diameter lensa objektif antara 15 dan 23 cm, planet itu nampak sebagai piringan biru pucat dengan penggelapan tepi yang khas. Dengan teleskop besar yang ukurannya 25 cm atau lebih lebar, pola-pola awan, begitu pula beberapa satelit yang lebih besar, seperti Titania dan Oberon, mungkin juga kelihatan.[50]




Struktur internal


Perbandingan ukuran Bumi dan Uranus
Secara kasar Uranus massanya 14,5 kali massa Bumi, menjadikannya planet yang paling ringan diantara planet-planet raksasa, sementara itu kerapatannya 1,27 g/cm³ membuatnya planet paling tidak padat kedua setelah Saturnus.[6] Meskipun berdiameter sedikit lebih besar daripada Neptunus (kira-kira empat kali Bumi), ia lebih ringan.[4] Nilai ini menandakan bahwa ia terutama terdiri dari beragam es, seperti air, amonia, dan metana.[8] Massa total es di bagian dalam Uranus tidak diketahui secara tepat, dengan munculnya gambaran-gambaran berbeda tergantung dari model yang dipilih; namun pasti antara 9,3 dan 13,5 massa Bumi.[8][51] Hidrogen dan helium hanya menyusun sebagian kecil dari keseluruhan, sebesar antara 0,5 dan 1,5 massa Bumi.[8] Massa sisanya (0,5 hingga 3,7 massa Bumi) diperhitungkan untuk massa material batuan.[8]
Model standar struktur Uranus adalah bahwa ia terdiri dari tiga lapisan: inti di bagian tengah, mantel ber-es di lapisan tengah dan selubung hidrogen/helium gas.[8][52] Intinya relatif kecil, dengan massa hanya 0,55 massa Bumi dan jari-jari kurang dari 20 persen jari-jari Uranus; mantelnya membentuk bagian terbesar planet tersebut, dengan sekitar 13,4 massa Bumi, sementara itu atmosfer atas relatif tidak penting, dengan berat sekitar 0,5 massa Bumi dan melebar sampai 20 persen terakhir jari-jari Uranus.[8][52] Inti Uranus kerapatannya sekitar 9 g/cm³, dengan tekanan di tengahnya 8 juta bar (800 GPa) dan suhu sekitar 5000 K.[51][52] Mantel esnya nyatanya tidak terdiri dari es dalam pengertian pada umumnya, tetapi dari fluida panas dan rapat yang terdiri atas air, amonia dan volatil lain.[8][52] Fluida ini, yang berdaya hantar listrik tinggi, kadang-kadang disebut lautan air–amonia.[53] Komposisi terbesar Uranus dan Neptunus sangat berbeda dari Jupiter dan Saturnus, dengan es mendominasi atas gas, oleh karenanya memberi alasan klasifikasi mereka yang terpisah sebagai raksasa es.
Sementara model yang diperkirakan di atas lebih atau kurang standar, ia tidaklah unik; model-model lain juga sesuai dengan pengamatan. Contohnya, jika jumlah substansial hidrogen dan materi batuan bercampur dalam mantel es, massa es total di interior akan lebih kecil, dan, begitu pula, massa batuan total akan lebih besar. Data yang ada sekarang tidak memungkinkan sains menentukan model mana yang benar.[51] Struktur interior fluida Uranus berarti bahwa ia tidak memiliki permukaan padat. Atmosfer gasnya sedikit demi sedikit berganti menjadi lapisan cairan internal.[8] Namun, demi kemudahan, sebuah bola pepat yang berevolusi ditetapkan di titik dimana tekanan sama dengan 1 bar (100 kPa), dibuat menurut kondisi sebagai suatu ‘permukaan’. Uranus mempunyai jari-jari ekuator dan kutub masing-masing 25 559 ± 4 dan 24 973 ± 20 km.[4] Permukaan ini akan digunakan di seluruh artikel ini sebagai titik nol untuk ketinggian.
Panas internal
Panas internal Uranus jelas nampak lebih rendah daripada planet raksasa lain; dalam istilah astronomi, fluks panasnya rendah.[15][54] Sebab begitu rendahnya suhu internal Uranus masih tidak dimengerti. Neptunus, yang hampir merupakan kembaran Uranus dalam hal ukuran dan komposisi, meradiasikan sebanyak 2,61 kali energi yang diterimanya dari Matahari ke angkasa.[15] Kontrasnya, Uranus, hampir tidak meradiasikan panas berlebih sama sekali. Daya total yang diradiasikan oleh Uranus dalam bagian inframerah jauh dari spektrum adalah 1,06 ± 0,08 kali energi Matahari yang diserap dalam atmosfernya.[9][55] Kenyataannya, fluks panas Uranus hanya 0,042 ± 0,047 W/m², yang lebih rendah daripada panas internal Bumi yang sekitar 0,075 W/m².[55] Suhu terendah yang tercatat di tropopause Uranus adalah 49 K (−224 °C),menjadikan Uranus sebagai planet terdingin dalam Tata Surya.[9][55]
Hipotesis dari perbedaan ketidaksesuaian ini diantaranya bahwa saat Uranus "terpukul" oleh penabrak yang sangat berat yang menyebabkan kemiringan sumbunya yang ekstrim, peristiwa itu juga menyebabkan keluarnya sebagian besar panas primordialnya, meninggalkannya dengan suhu intinya yang sangat menurun.[56] Hipotesis lain adalah bahwa beberapa bentuk penghalang ada di lapisan atas Uranus yang mencegah panas inti mencapai di permukaan.[8] Contohnya, konveksi mungkin berlangsung pada sekumpulan lapisan yang komposisinya berbeda, yang menghalangi penghantaran panas ke atas.[9][55]
Atmosfer
Meskipun tidak ada permukaan padat yang terdefinisi dengan jelas dalam interior Uranus, bagian terluar dari selimut gas Uranus yang dapat diakses oleh penginderaan jauh disebut atmosfernya.[9] Kemampuan penginderaan jauh berlanjut ke bawah hingga kira-kira 300 km di bawah level 1 bar (100 kPa), dengan tekanan yang bersesuaian sekitar 100 bar (10 MPa) dan suhu 320 K.[57] Korona yang tipis atmosfer itu meluas jauh hingga lebih dari dua jari-jari planet dari permukaan nominal pada tekanan 1 bar.[58] Atmosfer Uranian dapat dibagi menjadi tiga lapisan: troposfer, antara ketinggian −300 dan 50 km dan tekanan dari 100 sampai 0,1 bar; (10 MPa sampai 10 kPa), Stratosfer, kisaran ketinggiannnya antara 50 dan 4000 km dan tekanan antara 0,1 and 10–10 bar (10 kPa to 10 µPa), dan termosfer/korona yang meluas dari 4.000 km hingga setinggi 50.000 km dari permukaan.[9] Mesosfer tidak ada.
Komposisi
Komposisi atmosfer Uranian berbeda dari komposisi Uranus secara keseluruhan, ia terutama terdiri dari hidrogen molekuler dan helium.[9] Fraksi mol helium, yaitu jumlah atom helium per molekul gas, adalah 0,15 ± 0,03[11] di troposfer atas, yang bersesuaian dengan fraksi massa 0,26 ± 0,05.[9][55] Nilai ini sangat dekat dekat fraksi massa helium protosolar 0,275 ± 0,01,[59] menandakan bahwa helium tidak pernah berada di tengah-tengah planet seperti halnya pada raksasa-raksasa gas.[9] Penyusun yang paling melimpah ketiga dari atmosfer Uranian adalah metana (CH4).[9]Metana memiliki pita penyerapan yang kuat pada cahaya tampak dan dekat-inframerah membuat Uranus nampak berwarna hijau-biru atau sian.[9] Molekul metana menempati 2,3% atmosfernya dalam fraksi mol di bawah lapisan awan metana pada level tekanan 1,3 bar (130 kPa); ini menyatakan kira-kira 20 hingga 30 kali limpahan karbon yang ditemukan di Matahari.[9][10][60] Rasio pencampuran [e] jauh lebih rendah di atmosfer atas dikarenakan suhunya yang sangat rendah, yang menurunkan level kejenuhan dan menyebabkan metana yang berlebih membeku.[61] Kelimpahan senyawa yang kurang volatil seperti amonia, air dan hidrogen sulfida pada atmosfer yang dalam tidak begitu diketahui. Namun, mungkin nilainya juga lebih tinggi daripada yang ada di Matahari.[9][62] Selain metana, sejumlah kecil berbagai hidrokarbon ditemukan di stratosfernya Uranus, yang diperkirakan dihasilkan dari metana oleh fotolisis yang diinduksi oleh radiasi ultraviolet Matahari.[63] Mereka termasuk etana (C2H6), asetilena (C2H2), metilasetilena (CH3C2H), diasetilena (C2HC2H).[61][64][65] Spektroskopi juga mengungkapkan jejak-jejak uap air, karbon monoksida dan karbon dioksida di atmosfer atas, yang hanya dapat berasal dari sumber luar seperti debu yang jatuh dan komet.[64][65][66]
Troposfer


Profil suhu troposfer dan stratosfer bawah Uranian. Lapisan awan dan kabut juga ditandai.
Troposfer adalah bagian atmosfer terbawah dan paling rapat dan dicirikan dengan turunnya suhu bersama dengan ketinggian.[9] Suhu jatuh dari sekitar 320 K di dasar troposfer nominal pada −300 km hingga 53 K pada 50 km.[60][57] Suhu di daerah atas terdingin dari troposfer (tropopause) sebenarnya bervariasi dalam kisaran antara 49 dan 57 K bergantung pada ketinggian di planet.[9][54] Daerah tropopause bertanggungjawab bagi kebanyakan pancaran inframerah jauh panas planet itu, dan oleh karenanya menentukan suhu efektif 59,1 ± 0,3 K.[54][55]
Troposfernya dipercaya memiliki struktur awan yang sangat kompleks; awan air dihipotesiskan terletak dalam kisaran tekanan 50 sampai 100 bar (5 sampai 10 MPa), awan amonium hidrosulfida dalam kisaran 20 sampai 40 bar (2 sampai 4 MPa), awan amonia atau hidrogen sulfida antara 3 dan 10 bar (0,3 to 1 MPa) dan terakhir awan metana tipis yang terdeteksi langsung pada 1 sampai 2 bar (0,1 sampai 0,2 MPa).[9][10][57][67] Troposfer Uranus merupakan bagian atmosfernya yang sangat dinamis, menunjukkan angin yang kuat, awan yang cerah dan perubahan musim, yang akan dibahas di bawah.[15]
Atmosfer atas
Lapisan tengah atmosfer Uranian adalah stratisfer, dimana suhu umumnya naik dengan ketinggian dari 53 K di tropopause sampai antara 800 dan 850 K di dasar termosfer.[58] Pemanasan stratosfer disebabkan oleh penyerapan radiasi UV dan inframerah Matahari oleh metana dan hidrokarbon lain,[68] yang terbentuk di bagian atmosfer ini sebagai hasil dari fotolisis metana.[63] Panas juga dihantarkan dari termosfer yang panas itu.[68] Hidrokarbon menempati lapisan yang relatif sempit pada ketinggian antara 100 dan 280 km yang bersesuaian dengan kisaran tekanan 10 hingga 0,1 mbar (1000 hingga 10 kPa) dan suhu antara 75 dan 170 K.[61][64] Hidrokarbon yang paling melimpah adalah metana, asetilena dan etana dengan rasio pencampuran sekitar 10−7 relatif pada hidrogen. Rasio pencampuran karbon monoksida sama pada ketinggian-ketinggian ini.[61][64][66] Hidrokarbon yang lebih berat dan karbon dioksida rasio pencampurannya sebesar tiga kali lebih rendah.[64] Rasio kelimpahan air adalah sekitar 7×10−9.[65] Etana dan asetilena cenderung berkondensasi bagian bawah stratosfer dan tropopause yang lebih dingin (di bawah level 10 mBar) membentuk lapisan kabut,[63] yang mungkin sebagian bertanggungjawab bagi penampilan Uranus yang biasa. Akan tetapi, konsentrasi hidrokarbon di stratosfer Uranian di atas kabut tersebut rendah sekali dibandingkan dengan konsentrasi pada stratosfer planet raksasa lain.[61][69]
Lapisan terluar atmosfer Uranian adalah termosfer dan korona, yang suhunya seragam sekitar 800 hingga 850 K.[9][69] Sumber panas yang diperlukan untuk mempertahankan nilai sedemikian tidak dimengerti, karena baik radiasi UV jauh dan UV ekstrim maupun aktivitas aurora tidak dapat memberi energi yang diperlukan. Efisiensi pendinginan yang lemah yang diakibatkan kurangnya hidrokarbon di stratosfer di atas level tekanan 0,1 mBar mungkin juga ikut menyebabkannya.[58][69] Selain hidrogen molekuler, termosfer-korona mengandung bagian besar atom hidrogen. Massa mereka yang kecil bersama dengan suhu yang tinggi menjelaskan mengapa korona itu meluas sejauh 50 000 km atau dua jari-jari Uranian dari planet itu.[58][69] Korona yang meluas ini merupakan fitur Uranus yang unik.[69] Efeknya termasuk gaya hambat terhadap partikel kecil yang mengorbit Uranus, menyebabkan berkurangnya secara umum debu pada cincin Uranian.[58] Termosfer Uranian, bersama dengan bagian atas stratosfer, bersesuaian dengan ionosfer Uranus.[60] Pengamatan menunjukkan bahwa ionosfer tersebut berada pada ketinggian dari 2 000 sampai 10 000 km.[60] Ionosfer Uranian lebih rapat daripada ionosfer Saturnus maupun Neptunus, yang mungkin muncul dari konsentrasi rendah dari hidrokarbon di stratosfer.[69][70] Ionosfer itu dipertahankan terutama oleh radiasi UV Matahari dan kerapatannya bergantung pada aktivitas Matahari.[71] Aktivitas Aurora tidaklah signifikan dibandingkan dengan pada Jupiter dan Saturnus.[69][72]
Cincin planet


Cincin-cincin dalam Uranus. Cincin luar yang terang adalah cincin ε, delapan cincin lain juga ada.


Sistem cincin Uranian
Uranus mempunyai sistem cincin planet yang rumit, yang merupakan sistem demikian yang kedua yang ditemukan di Tata Surya setelah cincin Saturnus.[73] Cincin-cincin tersebut tersusun dari partikel yang sangat gelap, yang beragam ukurannya dari mikrometer hingga sepersekian meter.[14] Tiga belas cincin yang berbeda saat ini diketahui, yang paling terang adalah cincin ε (epsilon). Semua cincin Uranus (kecuali dua) sangat sempit—umumnya mereka lebarnya beberapa kilometer. Cincin tersebut mungkin cukup muda; pertimbangan dinamis menandakan bahwa mereka tidak terbentuk bersamaan dengan pembentukan Uranus. Materi di cincin-cincin itu mungkin dulu adalah bagian dari satu (atau beberapa) bulan yang terpecah oleh tubrukan berkecepatan tinggi. Dari banyak pecahan-pecahan yang terbentuk sebagai hasil dari tabrakan itu hanya beberapa partikel yang bertahan dalam jumlah terbatas zona stabil yang bersesuaian dengan cincin yang ada sekarang.[73][74]
William Herschel mendeskripsikan cincin yang mungkin ada di sekitar Uranus pada 1789. Penampakan ini umumnya dianggap meragukan, karena cincin-cincin itu cukup redup, dan pada dua abad berikutnya tak satupun yang diketahui oleh pengamat lain. Namun Herschel masih membuat deskripsi akurat tentang ukuran cincin epsilon, sudut relatifnya terhadap Bumi, warna merahnya, dan perubaahnnya yang nampak bersamaan dengan Uranus mengitari Matahari.[75][76] Sistem cincin itu benar-benar ditemukan pada 10 Maret 1977 oleh James L. Elliot, Edward W. Dunham, dan Douglas J. Mink menggunakan Kuiper Airborne Observatory. Penemuan itu merupakan keberuntungan; mereka berencana menggunakan okultasi bintang SAO 158687 oleh Uranus untuk mempelajari atmosfer planet itu. Akan tetapi, saat pengamatan mereka dianalisis, mereka menemukan bahwa bintang itu telah menghilang sebentar dari pandangan lima kali sebelum dan sesudah ia tidak nampak di balik planet itu. Mereka menyimpulkan bahwa pasti ada suatu sistem cincin di sekitar planet tersebut.[77] Kemudian mereka mendeteksi empat cincin tambahan.[77] Cincin-cincin itu langsung dicitrakan saat Voyager 2 lewat dekat Uranus pada 1986.[14] Voyager 2 juga menemukan dua cincin tambahan yang redup sehingga total jumlahnya menjadi sebelas.[14]
Pada Desember 2005, Teleskop angkasa Hubble mendeteksi sepasang cincin yang sebelumnya tidak diketahui. Yang terbesar terletak pada dua kali jarak cincin yang telah diketahui dari planet itu. Cincin-cincin baru ini begitu jauh dari planet tersebut hingga mereka disebut sistem cincin "luar". Hubble juga melihat dua satelit kecil yang salah satunya, Mab, berbagi orbit dengan cincin terluar yang baru ditemukan. Cincin-cincin baru ini membuat jumlah keseluruhan cincin Uranian menjadi 13.[78] Pada April 2006, gambar cincin baru tersebut dengan Observatorium Keck menghasilkan warna cincin-cincin luar: yang terluar biru dan yang lainnya merah.[79][80] Satu hipotesis mengenai warna biru cincin luar tersebut adalah bahwa ia terdiri atas partikel kecil air es dari permukaan Mab yang cukup kecil untuk menghamburkan cahaya biru.[79][81] Kontras dengan itu, cincin-cincin dalam planet itu nampak abu-abu.[79]

Medan magnet


Medan magnet Uranus seperti dilihat oleh Voyager 2 pada tahun 1986. S dan N adalah kutub selatan dan utara magnetik.
Sebelum kedatangan Voyager 2, tidak ada pengukuran magnetosfer Uranian yang dilakukan, sehingga sifatnya tetap jadi misteri. Sebelum tahun 1986, para astronom telah memperkirakan medan magnet Uranus segaris dengan angin matahari , maka karenanya ia akan segaris dengan kutub planet itu yang terletak di ekliptika.[82]
Pengamatan Voyager' mengungkapkan bahwa medan magnet Uranus aneh, baik karena ia tak berasal dari pusat geometrik planet tersebut dan karena ia miring 59° dari poros rotasi.[82][83] Faktanya dwikutub magnetiknya bergeser dari tengah planet itu ke kutub rotasi selatan sejauh sepertiga radius planet itu.[82] Geometri yang tidak biasa ini menyebabkan magnetosfer yang sangat tidak simetris, dimana kuat medan magnet pada permukaan di belahan selatan dapat serendah 0,1 gauss (10 µT), sedangkan di belahan utara kuatnya dapat setinggi 1,1 gauss (110 µT).[82] Medan rata-rata di permukaan adalah 0,23 gauss (23 µT).[82] Sebagai perbandingan, medan magnet Bumi kuatnya kira-kira sama pada kedua kutub, dan "ekuator magnetik"nya kira-kira sejajar dengan ekuator geografisnya.[83] Momen dipol Uranus 50 kali momen dipol Bumi.[82][83] Neptunus juga punya medan magnetik yang bergeser dan miring, menyarankan bahwa ini mungkin fitur umum raksasa es.[83] Satu hipotesis ialah bahwa, tidak seperti medan magnet planet kebumian dan raksasa gas, yang dibangkitkan dalam inti mereka, medan magnet raksasa es dibangkitkan oleh gerakan pada kedalaman yang relatif dangkal, contohnya, di lautan air–amonia.[53][84]
Meskipun penjajarannya mengundang keingintahuan, dalam segi lain magnetosfer Uranian mirip seperti planet lain: ia memiliki kejutan busur yang berlokasi 23 radius Uranian darinya, magnetopause pada 18 jari-jari Uranian, ekor magnetofer yang terbentuk penuh, serta sabuk radiasi.[82][83][85] Secara keseluruhan, struktur magnetosfer Uranus berbeda dari Jupiter dan lebih mirip dengan Saturnus.[82][83] Ekor magnetosfer Uranus memanjang di balik planet itu ke luar angkasa sejauh jutaan kilometer dan terpuntir oleh rotasi menyamping planet itu menjadi seperti pembuka tutup botol yang panjang.[82][86]
Di magnetosfer Uranus terdapat partikel bermuatan: proton dan elektron dengan sejumlah kecil ion H2+.[83][85] Tidak ada ion yang lebih berat yang terdeteksi. Banyak partikel ini mungkin berasal dari korona atmosfernya yang panas.[85] Energi ion dan elektron masing-masing bisa setinggi 4 dan 1,2 megaelektronvolt.[85] Kerapatan ion berenergi rendah (di bawah 1 kiloelektronvolt) di magnetosfer dalam adalah sekitar 2 cm−3.[87] Populasi partikel ini sangat dipengaruhi oleh bulan-bulan Uranian yang melalui magnetosfer itu meninggalkan celah-celah yang dapat diketahui.[85] Fluks partikelnya cukup tinggi untuk menyebabkan penggelapan atau pencuacaan angkasa dari permukaan bulan dalam skala waktu yang secara astronomis cepat 100.000 tahun.[85] Ini mungkin penyebab dari warna bulan-bulan dan cincin-cincinnya yang gelap seragam.[74] Uranus mempunyai aurora yang terbentuk dengan baik, yang terlihat sebagai busur yang terang di sekitar kedua kutub magnetik.[69] Namun, tidak seperti pada Jupiter, Uranus auroranya nampak tidak penting bagi keseimbangan energi termosfer planetnya.[72]

Iklim


Belahan selatan Uranus dalam warna yang kira-kira alami (kiri) dan pada panjang gelombang yang lebih tinggi (kanan), menunjukkan pita-pita awannya yang redup dan "tudung" atmosfer seperti dilihat oleh wahana Voyager 2
Pada panjang gelombang ultraviolet dan cahaya nampak, atmosfer Uranus nampak biasa sekali dibandingkan dengan raksasa gas lain, bahkan dengan Neptunus, yang sangat mirip dengannya dari segi lain.[15] Saat Voyager 2 terbang mendekati Uranus pada 1986, ia mengamati total 10 fitur awan di seluruh bagian planet itu.[14][88] Satu penjelasan yang diajukan atas kurangnya fitur ini adalah bahwa panas internal Uranus nampak jelas lebih rendah daripada panas internal planet-planet raksasa lain. Suhu terendah yang tercatat di tropopause Uranus adalah 49 K, menjadikan Uranus planet terdingin dalam Tata Surya, lebih dingin daripada Neptunus.[9][55]
Struktur berpita, angin dan awan


Kecepatan angin zona di Uranus. Daerah yang diberi bayangan menunjukkan kerah selatan dan pasangan utaranya nanti. Kurva merah adalah penyesuaian simetris terhadap data itu.
Pada 1986 Voyager 2 menemukan bahwa belahan selatan Uranus yang terlihat dapat dibagi menjadi dua daerah: kap kutub yang terang dan pita ekuator yang gelap (lihat gambar di kanan).[14] Perbatasan mereka terletak pada sekitar −45° garis lintang. Suatu pita sempit yang menempati kisaran garis lintang dari −45 sampai −50° merupakan fitur besar paling terang pada permukaan kentara planet Uranus.[14][89] Ia disebut "kerah" selatan. Kap dan kerah tersebut diduga sebagai daerah yang rapat dari awan metana yang terletak dalam kisaran tekanan 1,3 sampai 2 bar (lihat atas).[90] Namun sayang Voyager 2 tiba selama tinggi musim panas planet itu dan tidak bisa mengamati belahan utara. Akan tetapi, pada permulaan abad kedua puluh satu, saat daerah kutub utara terlihat, Teleskop angkasa Hubble dan Keck tidak mengamati ada kerah maupun kap di belahan utara.[89] Jadi Uranus kelihatannya asimetris: terang dekat kutub selatan dan gelap seragam di daerah di utara kerah selatan.[89] Selain struktur berpita skala besar, Voyager 2 mengamati sepuluh awan terang kecil, kebanyakan letaknya beberapa derajat ke utara dari kerah itu.[14] Dalam semua segi lain Uranus terlihat seperti planet yang mati dinamis pada tahun 1986.
Namun pada tahun 1990-an, jumlah fitur awan terang yang teramati meningkat pesat sebagian karena teknik pencitraan resolusi tinggi yang baru menjadi tersedia.[15] Mayoritas mereka ditemukan di belahan utara Uranus saat ia mulai kelihatan.[15] Penjelasan mula-mula—bahwa awan-awan terang itu lebih mudah diidentifikasi di bagian gelap planet tersebut, sedangkan di belahan selatan kerah terangnya menutupi mereka—ditunjukkan tidak benar: banyak sebenarnya fitur-fitur itu memang meningkat pesat.[91][92] Namun demikian, ada perbedaan antara awan-awan di tiap belahan planet itu. Awan-awan di utara lebih kecil, lebih tajam dan lebih terang.[92] Nampaknya mereka terletak pada tempat yang lebih tinggi.[92] Awan-awan itu masa hidupnya beragam. Beberapa awan kecil bertahan beberapa jam, sementara sedikitnya satu awan selatan mungkin telah ada sejak terbang dekatnya Voyager.[15][88] Pengamatan terbaru juga menemukan bahwa fitur awan di Uranus punya banyak persamaan dengan yang ada di Neptunus.[15] Sebagai contoh, bintik-bintik gelap yang umum terdapat di Neptunus tidak pernah diamati di Uranus sebelum tahun 2006, saat fitur demikian yang pertama dicitrakan.[93] Diperkirakan bahwa Uranus menjadi lebih mirip Neptunus selama musim ekuinoksnya.[94]


Bintik gelap pertama yang diamati di Uranus. Gambar didapat oleh ACS pada HST pada 2006.
Pelacakan banyak fitur-fitur awan memungkinkan penentuan angin zona yang berhembus di troposfer atas Uranus.[15] Di ekuator arah angin adalah retrograd, yang artinya bahwa mereka berhembus ke arah sebaliknya dari rotasi planet itu. Kecepatan mereka dari −100 hingga −50 m/s.[15][89] Kecepatan angin meningkat dengan jarak dari ekuator, mencapai nilai nol pada garis lintang dekat ±20°, dimana suhu troposfer minimum berada.[15][54] Dekat kutub-kutubnya, angin berganti arahnya menjadi prograd, mengalir searah dengan rotasi planetnya. Kecepatan angin terus meningkat mencapai nilai maksimanya pada garis lintang ±60° sebelum jatuh ke nol di kutub.[15] Kecepatan angin pada garis lintang −40° berkisar dari 150 hingga 200 m/s. Karena kerah di situ mengaburkan semua awan di bawah paralel itu, kecepatan yang ada di antaranya dan kutub selatan tidak mungkin diukur.[15] Kontras dengan itu, di belahan utaranya kecepatan angin maksimum setinggi 240 m/s diamati dekat garis lintang +50°.[15][89][95]
Variasi musim


Uranus pada 2005. Cincin-cincin, kerah selatan dan sebuah awan terang di belahan utara terlihat.
Untuk periode singkat dari Maret hingga Mei 2004, sejumlah awan besar muncul di atmosfer Uranian, memberinya penampilan yang mirip Neptunus.[92][96] Pengamatan-pengamatan termasuk kecepatan angin pemecah rekor 229 m/s (824 km/jam) badai petir yang bertahan lama yang disebut sebagai "Fourth of July fireworks" ("kembang api empat Juli") .[88] Pada tanggal 23 Augustus, 2006, peneliti-peneliti di Space Science Institute (Boulder, CO) dan University of Wisconsin mengamati sebuah bintik gelap di permukaan Uranus, memberi para astromon pengetahuan lebih terhadap aktivitas atmosfer planet tersebut.[93] Sebab kenaikan aktivitas secara tiba-tiba ini mesti terjadi tidak sepenuhnya diketahui, tetapi nampak bahwa kemiringan sumbu Uranus yang ekstrim menyebabkan variasi musim yang ekstrim pada cuacanya.[45][94] Menentukan sifat variasi musim ini adalah sulit karena data yang baik tentang atmosfer ini telah ada kurang dari 84 tahun, atau satu tahun Uranian penuh. Sejumlah penemuan telah dibuat. Fotometri selama masa setengah tahun Uranian (mulai pada tahun 1950-an) menunjukkan variasi yang beraturan dalam kecerahan pada dua pita spektrum, dengan nilai maksimal terjadi saat soltis dan nilai minimal saat ekuinoks.[97] Variasi periodik yang mirip, dengan nilai maksimal saat soltis, telah diketahui dalam pengukuran gelombang mikro dari troposfer dalam yang dimulai tahun 1960-an.[98] Pengukuran suhu stratosfer yang dimulai tahun 1970-an juga menunjukkan nilai minimum dekat soltis 1986.[68] Mayoritas variabilitas ini dipercaya terjadi karena perubahan dalam geometri pengamatan.[91]
Akan tetapi ada beberapa alasan untuk dipercaya bahwa perubahan-perubahan musim fisik terjadi di Uranus. Sementara planet tersebut diketahui memiliki daerah kutub selatan yang terang, kutub utaranya cukup redup, yang tidak cocok dengan model perubahan iklim yang diuraikan di atas.[94] Selama solstis utara sebelumnya tahun 1944, Uranus menampilkan kenaikan tingkat kecemerlangan, yang menyarankan bahwa kutub utara tidaklah selalu gelap sekali.[97] Informasi ini menandakan bahwa kutub yang terlihat menjadi terang pada suatu waktu sebelum solstis dan mejadi gelap setelah ekuinoks.[94] Analisis terperinci data cahaya tampak dan gelombang mikro mengungkapkan bahwa perubahan terang yang berkala itu tidak sepenuhnya simetris di sekitar waktu solstis, yang juga menandakan suatu perubahan pada pola-pola albedo meridional.[94] Akhirnya pada 1990-an, bersamaan dengan Uranus meninggalkan solstisnya, Teleskop Hubble dan teleskop permukaan Bumi mengungkapkan bahwa kap kutub selatan menjadi gelap dengan jelas (kecuali kerah selatan, yang tetap terang),[90] sementara belahan utaranya menunjukkan aktivitas yang meningkat,[88] seperti pembentukan awan dan angin yang lebih kencang, menguatkan perkiraan bahwa ia akan segera menjadi terang.[92]
Mekanisme perubahan-perubahan fisik itu masih tidak jelas.[94] Berdekatan dengan solstis musim panas dan musim dingin, belahan-belahan Uranus terletak secara bergantian pada penyinaran penuh Matahari atau menghadap angkasa jauh. Menjadi terangnya belahan yang disinari Matahari itu dipekirakan hasil dari penebalan lokal awan dan kabut metana yang terletak troposfer.[90] Kerah yang terang pada garis lintang −45° juga berhubungan dengan awan-awan metana.[90] Perubahan-perubahan lain di daerah kutub selatan dapat dijelaskan oleh perubahan-perubahan pada lapisan awan rendah.[90] Variasi pancaran gelombang mikro dari planet itu mungkin disebabkan oleh suatu perubahan pada sirkulasi troposfer dalam, karena awan dan kabut yang tebal mungkin menghambat konveksi.[99] Sekarang dengan sedang tibanya ekuinoks musim semi dan musim gugur di Uranus, dinamikanya juga berubah dan konveksi dapat berlangsung lagi.[88][99]
Pembentukan

Banyak yang berargumen bahwa perbedaan antara raksasa es dengan raksasa gas berlanjut pada pembentukan mereka.[100][101] Tata Surya dipercaya terbentuk dari bola gas dan debu raksasa yang berotasi yang dikenal sebagai nebula pramatahari. Sebagian besar gas nebula itu, terutama hidrogen dan helium, membentuk Matahari, sementara butiran debu berkumpul bersama membentuk protoplanet pertama. Saat planet-planet tersebut tumbuh, beberapa dari mereka akhirnya mengumpulkan cukup materi untuk gravitasi mereka untuk menarik gas nebula itu yang ditinggalkan.[100][101] Semakin banyak gas yang mereka tarik, mereka menjadi semakin besar; semakin besar mereka, semakin banyak gas yang mereka tarik sampai titik kritis tercapai, dan ukuran mereka mulai meningkat secara eksponensial. Raksasa-raksasa es, dengan gas nebular hanya bermassa beberapa kali Bumi, tidak pernah mencapai titik kritis itu.[100][101][102] Simulasi terbaru migrasi planet menyarankan bahwa kedua raksasa es itu terbentuk lebih dekat kepada Matahari daripada posisi mereka sekarang, dan bergerak ke arah luar setelah pembentukannya, satu hipotesis yang terperinci dalam model Nice.[100]

Bulan-bulan


Bulan-bulan utama Uranus dibandingkan, pada ukuran relatif mereka yang sesuai (gabungan foto Voyager 2)
Uranus memiliki 27 satelit alam yang diketahui.[102] Nama bagi satelit-satelit ini dipilih dari kareakter hasil kerja Shakespeare dan Alexander Pope.[52][103] Lima satelit utamanya adalah Miranda, Ariel, Umbriel, Titania dan Oberon.[52] Sistem satelit Uranian adalah yang paling kurang masif di antara raksasa gas; memang, massa gabungan kelima satelit utamanya itu kurang dari setengah massa Triton saja.[6] Satelit yang terbesar, Titania, radiusnya hanya 788,9 km, atau kurang dari setengah jari-jari Bulan, tetapi sedikit lebih besar daripada Rhea, bulan kedua terbesar Saturnus, menjadikan Titania bulan berukuran terbesar kedelapan dalam Tata Surya. Bulan-bulan itu memiliki albedo yang relatif rendah; berkisar dari 0,20 untuk Umbriel hingga 0,35 untuk Ariel (dalam cahaya hijau).[14] Bulan-bulan itu merupakan kumpulan es-batu yang kira-kira terdiri lima puluh persen es dan lima puluh persen batu. Es itu mungkin termasuk amonia dan karbon dioksida.[74][104]
Di antara satelit-satelit itu, Ariel nampak memiliki pemukaan termuda dengan kawah tabrakan paling sedikit, sedangkan Umbriel nampaknya yang tertua.[14][74] Miranda memiliki ngarai patahan sedalam 20 kilometer, lapisan-lapisan berpetak, dan variasi yang kacau dalam umur dan fitur permukaan.[14] Aktivitas geologis Miranda di masa lalu dipercaya didorong oleh pemanasan pasang-surut pada suatu ketika saat orbitnya lebih eksentrik daripada sekarang, mungkin hasil dari resonansi orbital dengan Umbriel yang dulu ada.[105] Proses perenggangan yang diasosiasikan dengan diapir yang naik mungkin merupakan asal dari korona-korona yang mirip 'lintasan balap' di bulan itu.[106][107] Sama dengan itu, Ariel dipercaya pernah berada dalam resonansi 4:1 dengan Titania.[108]


Gambar Uranus diambil oleh wahana Voyager 2 saat ia menuju Neptunus
Eksplorasi
Pada 1986, wahana Voyager 2 milik NASA mengunjungi Uranus. Kunjungan ini adalah satu-satunya usaha untuk menginvestigasi planet itu dari jarak dekat dan tidak ada kunjungan lain yang direncanakan untuk saat ini. Diluncurkan pada tahun 1977, Voyager 2 paling dekat ke Uranus pada tanggal 24 Januari 1986, berada dalam 81 500 kilometer puncak awan planet tersebut, sebelum melanjutkan perjalanannya ke Neptunus. Voyager 2 mempelajari struktur dan komposisi kimia atmosfernya,[60] menemukan 10 bulan dan mempelajari cuaca unik planet itu yang disebabkan kemiringan sumbunya yang 97,77°; dan memeriksa sistem cincinnya.[14][109] Ia juga mempelajari medan magnetnya, struktur tidak beraturannya, kemiringannya dan ekor magnetosfer pembuka tutup botolnya yang unik yang disebabkan orientasi menyamping Uranus.[82] Ia membuat investigasi mendetail pertama lima bulan terbesarnya, dan mempelajari kesemuanya dari cincin sistem itu yang diketahui yang banyaknya sembilan, dan menemukan dua yang baru.[14][74]
Bentuk fisik


Besar Saturnus dibandingkan dengan Bumi.
Saturnus memiliki bentuk yang diratakan di kutub, dan dibengkakkan keluar disekitar khatulistiwa. Diameter khatulistiwa Saturnus sebesar 120.536 km (74.867 mil) dimana diameter dari Kutub Utara ke Kutub Selatan sebesar 108.728 km (67.535 mil), berbeda sebesar 9%. Bentuk yang diratakan ini disebabkan oleh rotasinya yang sangat cepat, merotasi setiap 10 jam 14 menit waktu Bumi. Saturnus adalah satu-satunya Planet di tata surya yang massa jenisnya lebih sedikit daripada air. Walaupun inti Saturnus memiliki massa jenis yang lebih besar daripada air, planet ini memiliki atmosfer yang mengandung gas, sehingga massa jenis relatif planet ini sebesar is 0.69 g/cm³ (lebih sedikit daripada air), sebagai hasilnya, jika Saturnus diletakan diatas kolam yang penuh air, Saturnus akan mengapung.
[sunting] Atmosfer


Awan heksagonal kutub utara yang pertama dideteksi oleh Voyager 1 dan akhirnya dipastikan oleh Cassini.
[sunting] Komposisi
Bagian luar atmosfer Saturnus terbuat dari 96.7% hidrogen dan 3% helium, 0.2% metana dan 0.02% amonia. Pada atmosfer Saturnus juga terdapat sedikit kandungan asetilena, etana dan fosfin.[10]
[sunting] Awan
Awan Saturnus, seperti halnya Yupiter, merotasi dengan kecepatan yang berbeda-beda bergantung dari posisi lintangnya. Tidak seperti Yupiter, awan Saturnus lebih redup dan awan Saturnus lebih lebar di khatulistiwa. Awan terendah Saturnus dibuat oleh air es, dan dengan ketebalan sekitar 10 kilometer. Temperatur Saturnus cukup rendah, dengan suhu 250 K (-10°F, -23°C). Awan diatasnya, memiliki ketebalan 50 kilometer, terbuat dari es amonium hidrogensulfida (simbol kimia: NH4HS), dan diatas awan tersebut terdapat awan es amonia dengan ketebalan 80 kilometer. Bagian teratas dibuat dari gas hidrogen dan helium, dimana tebalnya sekitar 200 dan 270 kilometer. Aurora juga diketahui terbentuk di mesosfer Saturnus.[10] Temperatur di awan bagian atas Saturnus sangat rendah, yaitu sebesar 98 K (-283 °F, -175 °C). Temperatur di awan bagian dalam Saturnus lebih besar daripada yang diluar karena panas yang diproduksi di bagian dalam Saturn.[11] Angin Saturnus merupakan salah satu dari angin terkencang di Tata Surya, mencapai kecepatan 500 m/s (1.800 km/h, 1.118 mph),[12] yang jauh lebih cepat daripada angin yang ada di Bumi.
Pada Atmosfer Saturnus juga terdapat awan berbentuk lonjong yang mirip dengan awan berbentuk lonjong yang lebih jelas yang ada di Yupiter. Titik lonjong ini adalah badai besar, mirip dengan angin taufan yang ada di Bumi. Pada tahun 1990, Teleskop Hubble mendeteksi awan putih didekat khatulistiwa Saturnus. Badai seperti tahun 1990 diketahui dengan nama Bintik Putih Raksasa, badai unik Saturnus yang hanya ada dalam waktu yang pendek dan muncul setiap 30 tahun waktu Bumi.[13] Bintik Putih Raksasa juga ditemukan tahun 1876, 1903, 1933, dan tahun 1960. Jika lingkaran konstan ini berlanjut, diprediksi bahwa pada tahun 2020 bintik putih besar akan terbentuk kembali.[14]
Pesawat angkasa Voyager 1 mendeteksi awan heksagonal didekat kutub utara Saturnus sekitar bujur 78° utara. Cassini-Huygens nantinya mengkonfirmasi hal ini tahun 2006. Tidak seperti kutub utara, kutub selatan tidak menunjukan bentuk awan heksagonal dan yang menarik, Cassini menemukan badai mirip dengan siklon tropis terkunci di kutub selatan dengan dinding mata yang jelas. Penemuan ini mendapat catatan karena tidak ada planet lain kecuali Bumi di tata surya yang memiliki dinding mata.
[sunting] Inti Planet
Inti Planet Saturnus mirip dengan Yupiter. Planet ini memiliki inti planet di pusatnya dan sangat panas, temperaturnya mencapai 15.000 K (26.540 °F, 14.730 °C). Inti Planet Saturnus sangat panas dan inti planet ini meradiasi sekitar 21/2 kali lebih panas daripada jumlah energi yang diterima Saturnus dari Matahari.[11] Inti Planet Saturnus sama besarnya dengan Bumi, namun jumlah massa jenisnya lebih besar. Diatas inti Saturnus terdapat bagian yang lebih tipis yang merupakan hidrogen metalik, sekitar 30.000 km (18.600 mil). Diatas bagian tersebut terdapat daerah liquid hidrogen dan helium.[15] Inti planet Saturnus berat, dengan massa sekitar 9 sampai 22 kali lebih dari massa inti Bumi.[16]
[sunting] Medan gaya
Saturnus memiliki medan gaya alami yang lebih lemah dari Yupiter. Medan gaya Saturnus unik karena porosnya simetrikal, tidak seperti planet lainnya. Saturnus menghasilkan gelombang radio, namun mereka terlalu lemah untuk dideteksi dari Bumi. Bulan dari Saturnus, Titan mengorbit di bagian luar medan gaya Saturnus dan memberikan keluar plasma terhadap daerah dari partikel dari atmosfer Titan yang yang diionisasi.[17]
[sunting] Rotasi dan orbit


Animasi awan heksagonal Saturnus.
Jarak antara Matahari dan Saturnus lebih dari 1.4 milyar km, sekitar 9 kali jarak antara Bumi dan Matahari. Perlu 29,46 tahun Bumi untuk Saturnus untuk mengorbit Matahari yang diketahui dengan nama periode orbit Saturnus. Saturnus memiliki periode rotasi selama 10 jam 14 menit waktu Bumi. Namun, Saturnus tidak merotasi dalam rata-rata yang konstan. Periode rotasi Saturnus tergantung dengan kecepatan rotasi gelombang radio yang dikeluarkan oleh Saturnus. Pesawat angkasa Cassini-Huygens menemukan bahwa emisi radio melambat, dan periode rotasi Saturnus meningkat. Tidak diketahui hal apa yang menyebabkan gelombang radio melambat.
[sunting] Cincin Saturnus
Saturnus terkenal karena cincin di planetnya, yang menjadikannya sebagai salah satu obyek dapat dilihat yang paling menakjubkan dalam sistem tata surya.
[sunting] Sejarah
Cincin itu pertama sekali dilihat oleh Galileo Galilei pada tahun 1610 dengan teleskopnya, tetapi dia tidak dapat memastikannya. Dia kemudian menulis kepada adipati Toscana bahwa "Saturnus tidak sendirian, tetapi terdiri dari tiga yang hampir bersentuhan dan tidak bergerak. Cincin itu tersusun dalam garis sejajar dengan zodiak, dan yang ditengah (Saturnus) adalah tiga kali besar yang lurus (penjuru cincin)". Dia juga mengira bahwa Saturnus memiliki "telinga." Pada tahun 1612 sudut cincin menghadap tepat pada bumi dan cincin tersebut akhirnya hilang, dan kemudian pada tahun 1613 cincin itu muncul kembali, yang membuat Galileo bingung.
Persoalan cincin itu tidak dapat diselesaikan sehingga 1655 oleh Christian Huygens, yang menggunakan teleskop yang lebih kuat daripada teleskop yang digunakan Galileo.
Pada tahun 1675 Giovanni Domenico Cassini menentukan bahwa cincin Saturnus sebenarnya terdiri dari berbagai cincin yang lebih kecil dengan ruang antara mereka, bagian terbesar dinamakan Divisi Cassini.
Pada tahun 1859, James Clerk Maxwell menunjukan bahwa cincin tersebut tidak padat, namun terbuat dari partikel-partikel kecil, yang mengorbit Saturnus sendiri-sendiri, dan jika tidak, cincin itu akan tidak stabil atau terpisah.[18] James Keeler mempelajari cincin itu menggunakan spektrometer tahun 1895 yang membuktikan bahwa teori Maxwell benar.
[sunting] Bentuk fisik cincin Saturnus


Saturnus yang terlihat dari pesawat angkasa Cassini tahun 2007.
Cincin Saturnus tersebut dapat dilihat dengan menggunakan teleskop modern berkekuatan sederhana atau dengan teropong berkekuatan tinggi. Cincin ini menjulur 6.630 km hingga 120.700 km atas khatulistiwa Saturnus, dan terdiri daripada bebatuan silikon dioksida, oksida besi, dan partikel es dan batu. Terdapat dua teori mengenai asal cincin Saturnus. Teori pertama diusulkan oleh Édouard Roche pada abad ke-19, adalah cincin tersebut merupakan bekas bulan Saturnus yang orbitnya datang cukup dekat dengan Saturnus sehingga pecah akibat kekuatan pasang surut. Variasi teori ini adalah bulan tersebut pecah akibat hantaman dari komet atau asteroid. Teori kedua adalah cincin tersebut bukanlah dari bulan Saturnus, tetapi ditinggalkan dari nebula asal yang membentuk Saturnus. Teori ini tidak diterima masa kini disebabkan cincin Saturnus dianggap tidak stabil melewati periode selama jutaan tahun, dan dengan itu dianggap baru terbentuk.
Sementara ruang terluas di cincin, seperti Divisi Cassini dan Divisi Encke, dapat dilihat dari Bumi, Voyagers mendapati cincin tersebut mempunyai struktur seni yang terdiri dari ribuan bagian kecil dan cincin kecil. Struktur ini dipercayai terbentuk akibat tarikan graviti bulan-bulan Saturnus melalui berbagai cara. Sebagian bagian dihasilkan akibat bulan kecil yang lewat seperti Pan, dan banyak lagi bagian yang belum ditemukan, sementara sebagian cincin kecil ditahan oleh medan gravitas satelit penggembala kecil seperti Prometheus dan Pandora. Bagian lain terbentuk akibat resonansi antara periode orbit dari partikel di beberapa bagian dan bahwa bulan yang lebih besar yang terletak lebih jauh, pada Mimas terdapat divisi Cassini melalui cara ini, justru lebih berstruktur dalam cincin sebenarnya terdiri dari gelombang berputar yang dihasilkan oleh gangguan gravitas bulan secara berkala.
[sunting] Jari-jari


Jari-jari di cincin Saturnus, difoto oleh pesawat angkasa Voyager 2.
Voyager menemukan suatu bentuk seperti ikan pari di cincin Saturnus yang disebut jari-jari. Jari-jari tersebut terlihat saat gelap ketika disinari sinar matahari, dan terlihat terang ketika ada dalam sisi yang tidak diterangi sinar matahari. Diperkirakan bahwa jari-jari tersebut adalah debu yang sangat kecil sekali yang naik keatas cincin. Debu itu merotasi dalam waktu yang sama dengan magnetosfer planet tersebut, dan diperkirakan bahwa debu itu memiliki koneksi dengan elektromagnetisme. Namun, alasan utama mengapa jari-jari itu ada masih tidak diketahui.
Cassini menemukan jari-jari tersebut 25 tahun kemudian. Jari-jari tersebut muncul dalam fenomena musiman, menghilang selama titik balik matahari.
[sunting] Bulan


Titan, salah satu satelit milik Saturnus
Saturnus memiliki 59 bulan, 48 diantaranya memiliki nama. Banyak bulan Saturnus yang sangat kecil, dimana 33 dari 50 bulan memiliki diameter lebih kecil dari 10 kilometer dan 13 bulan lainnya memiliki diameter lebih kecil dari 50 km.[19] 7 bulan lainnya cukup besar untuk, dimana bulan tersebut adalah Titan, Rhea, Iapetus, Dione, Tethys, Enceladus dan Mimas. Titan adalah bulan terbesar, lebih besar dari planet Merkurius dan satu-satunya bulan di atmosfir yang memiliki atmosfir yang tebal. Hyperion dan Phoebe adalah bulan terbesar lainnya, dengan diameter lebih besar dari 200 km.
Di Titan, bulan terbesar Saturnus, bulan Desember tahun 2004 dan bulan Januari tahun 2005 banyak foto Titan diambil oleh Cassini-Huygens. 1 bagian dari satelit ini, yaitu Huygens mendarat di Titan.
[sunting] Eksplorasi
[sunting] Zaman kuno dan observasi
Saturnus telah diketahui sejak zaman prasejarah.[20] Pada zaman kuno, planet ini adalah planet terjauh dari 5 planet yang diketahui di tata surya (termasuk Bumi) dan merupakan karakter utama dalam berbagai mitologi. Pada mitologi Kekaisaran Romawi, Dewa Saturnus, dimana nama Planet ini diambil dari namanya, adalah dewa pertanian dan panen.[21] Orang Romawi menganggap Saturnus sama dengan Dewa Yunani Kronos.[21] Orang Yunani mengeramatkan planet terluar untuk Kronos,[22] dan orang Romawi mengikutinya.
Pada astrologi Hindu, terdapat 9 planet dimana Tata Surya diketahui dengan nama Navagraha. Saturnus, salah satu dari mereka, diketahui dengan nama "Sani" atau "Shani," hakim dari semua Planet, dan menentukan seluruhnya menurut kelakuan baik atau buruk yang mereka lakukan.[21] Kebudayaan Tiongkok dan Jepang kuno menandakan Saturnus sebagai bintang Bumi (土星). Hal ini berdasarkan 5 elemen yang secara tradisional digunakan untuk mengklasifikasikan elemen alami. Orang Ibrani kuno menyebut Saturnus dengan nama "Shabbathai". Malaikatnya adalah Cassiel. Kepintarannya, atau jiwa bermanfaat, adalah Agiel (layga), dan jiwanya (jiwa gelap) adalah Zazel (lzaz). Orang Turki Ottoman dan orang Melayu menamainya "Zuhal", berasal dari bahasa Arab زحل.
Cincin Saturnus membutuhkan paling sedikit teleskop dengan diameter 75 mm untuk menemukannya dan cincin tersebut tidak diketahui sampai ditemukan oleh Galileo Galilei tahun 1610.[23] Galileo sempat bingung dengan cincin Saturnus dan mengira bahwa Saturnus bertelinga. Christian Huygens menggunakan teleskop dengan perbesaran yang lebih besar dan ia menemukan bahwa cincin itu adalah cincin Saturnus. Huygens juga menemukan bulan dari Saturnus, Titan. Tidak lama, Giovanni Domenico Cassini menemukan 4 bulan lainnya, Iapetus, Rhea, Tethys dan Dione. Pada tahun 1675, Cassini juga menemukan celah yang disebut dengan divisi Cassini.[24]
Tidak ada penemuan lebih lanjut sampai tahun 1789 ketika William Herschel menemukan 2 bulan lagi, Mimas dan Enceladus. Bulan Hyperion, yang memiliki resonansi orbit dengan Titan, ditemukan tahun 1848 oleh tim dari Britania Raya.
Pada tahun 1899, William Henry Pickering menemukan satelit Phoebe. Selama abad ke-20, penelitian terhadap Titan mengakibatkan adanya konfirmasi pada tahun 1944 bahwa Titan memiliki atmosfer yang tebal, dimana Titan menjadi bulan yang unik diantara bulan di Tata Surya lainnya.
[sunting] Pioneer 11
Saturnus dikunjungi oleh Pioneer 11 pada bulan September tahun 1979. Pioner 11 terbang 20.000 kilometer dari ujung awan Saturnus. Gambar Saturnus dan beberapa bulannya dengan resolusi rendah didapat. Resolusi gambar tersebut tidak bagus untuk melihat fitur permukaan. Pesawat udara juga mempelajari cincin Saturnus, diantara penemuan-penemuan, terdapat penemuan cincin-F dan fakta bahwa celah gelap di cincin terang jika dilihat kearah matahari, dalam kata lain, mereka bukan material kosong. Pioneer 11 juga mengukur temperatur Titan.[25]
[sunting] Voyager
Pada bulan November tahun 1980, Voyager 1 mengunjungi sistem Saturnus. Pesawat ini mengirim kembali gambar Planet, cincin dan satelitnya dalam resolusi besar. Fitur permukaan berbagai bulan dilihat pertama kali. Voyager 1 melakukan penerbangan dekat dengan Titan, dan meningkatkan pengetahuan manusia atas Titan, selain itu, Voyager 1 juga membuktikan bahwa atmosfir Titan tidak dapat dilalui dalam panjang gelombang yang dapat dilihat, sehingga, tidak ada detail tentang permukaan Titan.[26]
1 tahun kemudian, pada bulan August tahun 1981, Voyager 2 melanjutkan penelitian sistem Saturnus. Lebih banyak foto bulan-bulan Saturnus jarak dekat yang didapat. Namun terjadi ketidakberuntungan, selama penerbangan, kamera satelit tersangkut untuk beberapa hari, dan beberapa pengambilan gambar yang direncanakan hilang. Graviti Saturnus digunakan untuk mengarahkan lintasan pesawat angkasa tersebut menuju Uranus.[26]
Satelit tersebut menemukan dan memperjelas beberapa satelit baru yang mengorbit didekat cincin Saturnus. Mereka juga menemukan celah kecil Maxwell dan Keeler (celah seluas 42 km di cincin Saturnus).
[sunting] Cassini


Gambaran Artis tentang Cassini yang sedang mengorbit Saturnus.


Posisi-posisi Saturnus: 2001–2029
Pada tanggal 1 Juli 2004, pesawat angkasa Cassini–Huygens melakukan manuver SOI (Saturn Orbit Insertion) dan memasuki orbit sekitar Saturnus. Sebelum SOI, Cassini telah mempelajari sistem ini. Pada bulan Juni tahun 2004, Cassini telah melakukan penerbangan dekat ke Phoebe, dan memberikan data dan gambar dengan resolusi besar.
Penerbangan Cassini ke bulan terbesar Titan telah menangkan gambar danau besar dan pantai serta beberapa pulau dan pegunungan. Cassini menyelesaikan 2 penerbangan Titan sebelum mengeluarkan satelit Huygens pada tanggal 25 Desember 2004. Huygens turun ke permukaan Titan pada tanggal 14 Januari 2005, mengirim data selama turun ke atmosfir dan pendaratan. Selama tahun 2005, Cassini melakukan beberapa penerbangan ke Titan dan satelit yang mengandung es. Penerbangan Cassini ke Titan yang terakhir dijadwalkan pada tanggal 19 Juli 2007.
Sejak awal tahun 2005, ilmuan telah meneliti tentang petir di Saturnus, yang ditemukan oleh Cassini. Kekuatan petir di Saturnus diperkirakan 1000 kali lebih besar daripada petir di Bumi. Para ilmuan percaya bahwa badai ini adalah badai terkuat yang pernah terlihat.[27]
Pada tanggal 10 Maret 2006, NASA melaporkan bahwa, melalui gambar, satelit Cassini menemukan fakta-fakta tentang cairan air yang meletus di geiser di salah satu bulan Saturnus, Enceladus. Gambar tersebut juga menunjukan partikel air di cairan tersebut dipancarkan oleh pancaran es. Menurut Dr. Andrew Ingersoll dari Institut Teknologi California, "Bulan lainnya di tata surya memiliki samudera cairan air yang ditutup oleh es. Apa yang berbeda disini adalah bahwa cairan air tidak akan lebih dari 10 meter dibawah permukaan."[28]
Pada tanggal 20 September 2006, sebuah foto dari satelit Cassini menemukan cincin Saturnus yang belum ditemukan, diluar cincin utama Saturnus yang lebih bercahaya dan didalam cincin G dan E. Cincin ini merupakan hasil dari tabrakan meteor dengan 2 bulan Saturnus.[29]
Pada bulan Juli tahun 2006, Cassini melihat bukti pertama danau hidrokarbon didekat kutub utara Titan, yang dikonfirmasi pada bulan Januari tahun 2007. Pada bulan Maret tahun 2007, beberapa gambar didekat kutub utara Titan menemukan "lautan" hidrokarbon, yang terbesar dimana besarnya hampir sebesar Laut Kaspia.[30]
Pada tahun 2006, satelit itu telah menemukan dan mengkonfirmasi 4 satelit baru. Misi utama satelit ini akan berakhir tahun 2008 ketika pesawat angkasa akan diperkirakan menyelesaikan 74 misi mengelilingi orbit disekitar planet. Namun satelit itu diperkirakan baru menyelesaikan setidak-tidaknya satu misi.
[sunting] Penglihatan paling baik
Saturnus adalah planet terjauh dari 5 planet yang paling mudah dilihat dengan mata telanjang, dan 4 planet lainnya adalah Merkurius, Venus, Mars, dan Yupiter (Uranus dan 4 Vesta terlihat dengan mata telanjang ketika langit gelap), dan planet terakhir yang diketahui oleh astronom awal sampai Uranus ditemukan tahun 1781. Saturnus muncul dalam penglihatan mata telanjang pada saat langit malam sebagai titik terang dan berwarna kuning. Bantuan optik (teleskop) diperbesar setidak-tidaknya 20X dibutuhkan untuk melihat cincin Saturnus bagi banyak orang. [31]
Saturnus menjadi target observasi ketika terlihat di langit, Saturnus dan cincinnya paling baik dilihat ketika planet itu berada pada posisi tertentu. Pada posisi tanggal 13 Januari 2005, Saturnus muncul paling terang sampai tahun 2031 akan lebih terang, terutama karena orientasi yang baik dari Bumi.[32]

tugas

Uranus adalah planet ketujuh dari Matahari dan planet yang terbesar ketiga dan terberat keempat dalam Tata Surya. Ia dinamai dari nama dewa langit Yunani kuno Uranus (Οὐρανός) ayah dari Kronos (Saturnus) dan kakek dari Zeus (Jupiter). Meskipun Uranus terlihat dengan mata telanjang seperti lima planet klasik, ia tidak pernah dikenali sebagai planet oleh pengamat dahulu kala karena redupnya dan orbitnya yang lambat.[13] Sir William Herschel mengumumkan penemuannya pada tanggal 13 Maret 1781, menambah batas yang diketahui dari Tata Surya untuk pertama kalinya dalam sejarah modern. Uranus juga merupaakn planet pertama yang ditemukan dengan teleskop.
Uranus komposisinya sama dengan Neptunus, dan keduanya mempunyai komposisi yang berbeda dari raksasa gas yang lebih besar, Jupiter dan Saturn. Karenanya, para astronom kadang-kadang menempatkannya dalam kategori yang berbeda, "raksasa es". Atmosfer Uranus, yang sama dengan Jupiter dan Saturnus karena terutama terdiri dari hidrogen dan helium, mengandung banyak "es" seperti air, amonia dan metana, bersama dengan jejak hidrokarbon.[9] Atmosfernya itu adalah atmofer yang terdingin dalam Tata Surya, dengan suhu terendah 49 K (−224 °C). Atmosfer planet itu punya struktur awan berlapis-lapis dan kompleks, dan dianggap bahwa awan terendah terdiri atas air, dan lapisan awan teratas diperkirakan terdiri dari metana.[9] Kontras dengan itu, interior Uranus terutama terdiri atas es dan bebatuan.[8]
Seperti planet raksasa lain, Uranus mempunyai sistem cincin, magnetosfer serta banyak bulan. Sistem Uranian konfigurasinya unik di antara planet-planet karena poros rotasi miring ke sisinya, hampir pada bidang revolusinya mengelilingi Matahari. Sehingga, kutub utara dan selatannya terletak pada tempat yang pada banyak planet lain merupakan ekuator mereka.[14] Dilihat dari Bumi, cincin Uranus kadang nampak melingkari planet itu seperti sasaran panah dan bulan-bulannya mengelilinginya seperti jarum-jarum jam, meskipun pada tahun 2007 dan 2008 cincin itu terlihat dari tepi. Tahun 1986, gambar dari Voyager 2 menunjukkan Uranus sebagai planet yang nampak tidak berfitur pada cahaya tampak tanpa pita awan atau badai yang diasosiasikan dengan raksasa lain.[14] Akan tetapi, pengamat di Bumi melihat tanda-tanda perubahan musim dan aktivitas cuaca yang meningkat pada tahun-tahun belakangan bersamaan dengan Uranus mendekati ekuinoksnya. Kecepatan angin di planet Uranus dapat mencapai 250 meter per detik (900 km/jam, 560 mil per jam).[15]
Neptunus merupakan planet terjauh (kedelapan) jika ditinjau dari Matahari.
Neptunus memiliki jarak rata-rata dengan Matahari sebesar 4.450 juta km. Neptunus memiliki diameter mencapai 49.530 km dan memiliki massa 17,2 massa Bumi. Periode rotasi planet ini adalah 16,1 jam., sedangkan periode revolusi adalah 164,8 tahun. Bentuk planet ini mirip dengan Bulan dengan permukaan terdapat lapisan tipis silikat. Komposisi penyusun planet ini adalah besi dan unsur berat lainnya. Planet Neptunus memiliki 8 buah satelit, di antaranya Triton, Proteus, Nereid, dan Larissa.



Pluto (nama resmi: 134340) adalah sebuah planet katai (dwarf planet) dalam Tata Surya. Sebelum 24 Agustus 2006, Pluto berstatus sebagai sebuah planet dan setelah pengukuran, merupakan planet terkecil dan terjauh (urutan kesembilan) dari matahari.
Pada 7 September 2006, nama Pluto diganti dengan nomor saja, yaitu 134340. Nama ini diberikan oleh Minor Planet Center (MPC), organisasi resmi yang bertanggung jawab dalam mengumpulkan data tentang asteroid dan komet dalam tata surya kita. [1]
Pada 1978 Pluto diketahui memiliki satelit yang berukuran tidak terlalu kecil darinya bernama Charon (berdiameter 1.196 km). Kemudian ditemukan lagi satelit lainnya, Nix dan Hydra.
Setelah 75 tahun semenjak ditemukan, Pluto masih terbalut misteri. Saat ini wahana nirawak New Horizons telah diluncurkan untuk meneliti Pluto dan diperkirakan akan mendekati Pluto dalam jarak terkecil pada Juli 2015.
Statistik
Sejak ditemukan oleh Clyde William Tombaugh, seorang astronom muda di Observatorium Lowell, pada 18 Februari 1930, Pluto kemudian menjadi salah satu anggota dari Tata Surya yang paling jauh letaknya.
Jarak Pluto dengan matahari adalah 5.900,1 juta kilometer. Pluto memiliki diameter yang mencapai 4.862 km dan memiliki massa 0,002 massa Bumi. Periode rotasi Pluto adalah 6,39 hari, sedangkan periode revolusi adalah 248,4 tahun. Bentuk Pluto mirip dengan Bulan dengan atmosfer yang mengandung metan. Suhu permukaan Pluto berkisar -233oCelsius sampai dengan-223o Celsius, sehingga sebagian besar berwujud es.
Status Pluto sebagai planet
Kalau melihat sejarahnya, Pluto sebenarnya ditemukan lantaran adanya teori mengenai planet kesembilan dalam sistem tata surya Bimasakti.
Baru kemudian setelah Clyde mampu menunjukkan bukti-bukti nyata dalam penelitiannya, akhirnya Pluto resmi menjadi salah satu planet yang menentukan rotasi galaksi ini.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian, Charon, satelit yang mengelilingi Pluto sempat dikira sebagai planet yang sebenarnya. Akhirnya keberadaan satelit Charon ini semakin menguatkan status Pluto sebagai planet
Akan tetapi, para astronom kemudian menemukan sekitar 1.000 objek kecil lain di belakang Neptunus (disebut objek trans-Neptunus) yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Obyek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Obyek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, obyek ini juga memiliki satelit.
Pluto sendiri, dengan orbit memanjangnya yang aneh, memiliki perilaku lebih mirip objek Sabuk Kuiper dibanding sebuah planet, demikian anggapan beberapa astronom. Orbit Pluto yang berbentuk elips tumpang tindih dengan orbit Neptunus. Orbitnya terhadap Matahari juga terlalu melengkung dibandingkan delapan objek yang diklasifikasikan sebagai planet. Pluto juga berukuran amat kecil, bahkan lebih kecil dari Bulan, sehingga terlalu kecil untuk disebut planet.
Setelah Tombaugh wafat tahun 1997, beberapa astronom menyarankan agar International Astronomical Union, sebuah badan yang mengurusi penamaan dan penggolongan benda langit, menurunkan pangkat Pluto bukan lagi sebagai planet. Selain itu beberapa astronom juga tetap ingin menerima Pluto sebagai sebuah planet. Alasannya, Pluto memiliki bentuk bundar seperti planet, sedangkan komet dan asteroid cenderung berbentuk tak beraturan. Pluto juga mempunyai atmosfer dan musim layaknya planet.
Pada 24 Agustus 2006, dalam sebuah pertemuan Persatuan Astronomi Internasional, 3.000 ilmuwan astronomi memutuskan untuk mengubah status Pluto menjadi "planet katai".
Asal-usul nama
Mengenai masalah ini juga sempat menjadi kontroversi. Karena sempat membuat banyak pihak saling berselisih paham. Banyak yang bilang nama ini berasal dari karakter anjing dalam komik Walt Disney. Kenyataan bahwa komik tersebut memulai debutnya pada tahun yang sama dengan penemuan benda angkasa tersebut oleh manusia dipercaya banyak pihak sebagai salah satu alasannya.
Nama Pluto juga merupakan nama seorang dewa dari kebudayaan Romawi yang menguasai dunia kematian (Hades dalam kebudayaan Yunani). Nama ini diberikan mungkin karena benda angkasa ini sama gelap dan dinginnya dengan dewa tersebut,selain juga misteri yang menyelimutinya.
Ternyata banyak nama lain yang pernah ditolak untuk menamai planet baru tersebut. Salah satunya adalah Minerva, yang berarti dewi ilmu pengetahuan. Alasannya jelas, karena nama tersebut sudah dipergunakan untuk hal yang lain. Lalu ada nama Constante, merujuk pada nama pendiri observatorium tempat Clyde bekerja, Constante Lowell. Namun pemberian nama Lowell juga ditolak secara perlahan-lahan.
Diselimuti misteri
Hingga kini bisa dibilang Pluto adalah salah satu benda angkasa yang paling jarang diteliti manusia. Berbagai alasan menyebabkan berbagai proyek untuk meneliti Pluto terhenti.
Wahana peneliti
Salah satu penelitian yang cukup serius akhirnya digelar juga untuk melihat Pluto, yaitu penelitian pihak AS melalui NASA, yang mengirimkan satu set pesawat tanpa awak untuk mendata daerah permukaan Pluto, karakteristik geografi dan geomorfologi secara global dan mencari data struktur atmosfer yang melingkupi Pluto.
Sebuah ekspedisi yang dinamakan Pluto Express direncanakan mulai meluncur ke angkasa pada Desember 2004 dan direncanakan tiba di Pluto paling lama pada tahun 2008, namun ekspedisi ini akhirnya dibatalkan pada tahun 2000 karena masalah dana dan digantikan sebuah misi baru bernama New Horizons (diluncurkan Januari 2006). Pesawat ini akan melintasi Pluto dan Charon, satelit alaminya, dan kemudian mengirimkan foto-foto ke Bumi. Salah satu studi yang akan dilakukan Horizons mencakup masalah atmosfer yang ada di lapisan satelit Pluto tersebut. New Horizons juga direncanakan akan terbang menuju Sabuk Kuiper.
Hingga kini dipercaya Pluto memiliki sifat atmosfer yang paling asli semenjak memisahkan diri dari matahari. Lapisan atmosfer ini juga dikenal sebagai lapisan paling dingin yang pernah dimasuki sebuah pesawat misi angkasa luar dari bumi.
Eris (nama resmi: 136199 Eris; sebelumnya dikenal sebagai 2003 UB313 dan juga Xena) adalah sebuah planet katai yang ditemukan pada hari Jumat, 29 Juli 2005 oleh tiga astronom dari Amerika Serikat, Profesor Mike Brown dan koleganya dari Institut Teknologi California (Caltech), yang juga menemukan beberapa objek-objek serupa planet pada area Sabuk Kuiper.
Awalnya diklaim oleh penemunya sebagai sebuah planet (namun status "planet katai" kemudian diterima), Eris sangat dingin, berbatu-batu dan lebih besar daripada Pluto. Eris diketahui mempunyai sebuah bulan, Dysnomia, yang ditemukan pada 10 September 2005.
Lebih besar dari Pluto
Eris memiliki diameter sekitar 3.000 kilometer, sehingga merupakan objek terbesar yang ditemukan di tata surya setelah Neptunus dideteksi tahun 1846. Eris juga lebih besar dari Pluto, bekas planet terkecil yang ditemukan pada 1930. Eris berjarak hampir 15 miliar kilometer (sembilan miliar mil) atau sekitar tiga kali jarak Pluto dari matahari. Dibanding Bumi, jaraknya 97 kali dibanding jarak Bumi-Matahari.
Eris adalah benda paling jauh yang pernah diketahui untuk mengitari di seluruh Matahari. Ukurannya mungkin satu setengah kali lebih besar dari Pluto. Objek angkasa ini terlihat pertama kali tahun 2003. Ia terlihat lewat teleskop Samuel Oschin di Observatorium Palomar dan teleskop 8m Gemini di Mauna Kea, Hawaii. Pertama kali terlihat 21 Oktober 2003, namun para astronom tidak melihatnya lagi hingga 15 bulan kemudian. Baru pada 8 Januari 2005 ia terlihat lagi. Selain Brown, penemu lainnya adalah Chad Trujillo dari Observatorium Gemini di Hawaii, dan David Rabinowitz dari Universitas Yale.
Eris terlihat lebih redup dari Pluto, tapi itu karena jaraknya tiga kali lebih jauh. Bila ia berada di tempat Pluto, ia akan terlihat lebih terang. Sejak ditemukan, penyebutan objek ini sebagai planet menjadi perdebatan.
Planet katai
Pada 24 Agustus 2006, para ilmuwan Persatuan Astronomi Internasional akhirnya memutuskan statusnya sebagai "planet katai" (dwarf planet). Sebelumnya kelompok astronom lain juga telah mengumumkan penemuan objek 2003 EL61, yang ukurannya kurang lebih sebesar Pluto. Planet baru ini memutari bumi sekali dalam setiap 560 tahun dan saat ini merupakan objek terjauh dari Bumi.[rujukan?]
Dalam waktu 280 tahun, jaraknya ke Bumi akan sedekat Neptunus. Seperti Pluto, permukaan Eris diduga didominasi oleh metana. Eris juga dipercaya merupakan bagian dari Sabuk Kuiper (Kuiper Belt), kawasan dalam sistem solar menjulur dari orbit Neptunus.
Diperkirakan ada sekitar 100.000 objek yang dikenal sebagai objek Sabuk Kuiper, salah satunya adalah Pluto, sehingga sebagian ilmuwan pun lebih menganggap status Eris sebagai objek Sabuk Kuiper dibandingkan sebuah planet. Tapi karena ukurannya yang besar, diameternya mencapai 3.000 kilometer, saat ditemukan Brown berani mengkualifikasi objek angkasa temuannya sebagai planet. "Kami mengharapkan ini tidak terlalu kontroversial, seperti orang mempercayai Pluto sebagai planet," katanya. (sumber: National Geographic News, Detikcom, Kompas)

tata surya

Tata Surya adalah kumpulan benda langit yang terdiri atas sebuah bintang yang disebut Matahari dan semua objek yang terikat oleh gaya gravitasinya. Objek-objek tersebut termasuk delapan buah planet yang sudah diketahui dengan orbit berbentuk elips, lima planet kerdil/katai, 173 satelit alami yang telah diidentifikasi, dan jutaan benda langit (meteor, asteroid, komet) lainnya.
Tata Surya terbagi menjadi Matahari, empat planet bagian dalam, sabuk asteroid, empat planet bagian luar, dan di bagian terluar adalah Sabuk Kuiper dan piringan tersebar. Awan Oort diperkirakan terletak di daerah terjauh yang berjarak sekitar seribu kali di luar bagian yang terluar.
Berdasarkan jaraknya dari matahari, kedelapan planet Tata Surya ialah Merkurius (57,9 juta km), Venus (108 juta km), Bumi (150 juta km), Mars (228 juta km), Yupiter (779 juta km), Saturnus (1.430 juta km), Uranus (2.880 juta km), dan Neptunus (4.500 juta km). Sejak pertengahan 2008, ada lima obyek angkasa yang diklasifikasikan sebagai planet kerdil. Orbit planet-planet kerdil, kecuali Ceres, berada lebih jauh dari Neptunus. Kelima planet kerdil tersebut ialah Ceres (415 juta km. di sabuk asteroid; dulunya diklasifikasikan sebagai planet kelima), Pluto (5.906 juta km.; dulunya diklasifikasikan sebagai planet kesembilan), Haumea (6.450 juta km), Makemake (6.850 juta km), dan Eris (10.100 juta km).
Enam dari kedelapan planet dan tiga dari kelima planet kerdil itu dikelilingi oleh satelit alami, yang biasa disebut dengan "bulan" sesuai dengan Bulan atau satelit alami Bumi. Masing-masing planet bagian luar dikelilingi oleh cincin planet yang terdiri dari debu dan partikel lain.
Asal usul
Banyak hipotesis tentang asal usul Tata Surya telah dikemukakan para ahli, diantaranya :


Pierre-Simon Laplace, pendukung Hipotesis Nebula


Gerard Kuiper, pendukung Hipotesis Kondensasi
Hipotesis Nebula
Hipotesis nebula pertama kali dikemukakan oleh Emanuel Swedenborg (1688-1772)[1] tahun 1734 dan disempurnakan oleh Immanuel Kant (1724-1804) pada tahun 1775. Hipotesis serupa juga dikembangkan oleh Pierre Marquis de Laplace[2] secara independen pada tahun 1796. Hipotesis ini, yang lebih dikenal dengan Hipotesis Nebula Kant-Laplace, menyebutkan bahwa pada tahap awal, Tata Surya masih berupa kabut raksasa. Kabut ini terbentuk dari debu, es, dan gas yang disebut nebula, dan unsur gas yang sebagian besar hidrogen. Gaya gravitasi yang dimilikinya menyebabkan kabut itu menyusut dan berputar dengan arah tertentu, suhu kabut memanas, dan akhirnya menjadi bintang raksasa (matahari). Matahari raksasa terus menyusut dan berputar semakin cepat, dan cincin-cincin gas dan es terlontar ke sekeliling matahari. Akibat gaya gravitasi, gas-gas tersebut memadat seiring dengan penurunan suhunya dan membentuk planet dalam dan planet luar. Laplace berpendapat bahwa orbit berbentuk hampir melingkar dari planet-planet merupakan konsekuensi dari pembentukan mereka.[3]
Hipotesis Planetisimal
Hipotesis planetisimal pertama kali dikemukakan oleh Thomas C. Chamberlin dan Forest R. Moulton pada tahun 1900. Hipotesis planetisimal mengatakan bahwa Tata Surya kita terbentuk akibat adanya bintang lain yang lewat cukup dekat dengan matahari, pada masa awal pembentukan matahari. Kedekatan tersebut menyebabkan terjadinya tonjolan pada permukaan matahari, dan bersama proses internal matahari, menarik materi berulang kali dari matahari. Efek gravitasi bintang mengakibatkan terbentuknya dua lengan spiral yang memanjang dari matahari. Sementara sebagian besar materi tertarik kembali, sebagian lain akan tetap di orbit, mendingin dan memadat, dan menjadi benda-benda berukuran kecil yang mereka sebut planetisimal dan beberapa yang besar sebagai protoplanet. Objek-objek tersebut bertabrakan dari waktu ke waktu dan membentuk planet dan bulan, sementara sisa-sisa materi lainnya menjadi komet dan asteroid.
Hipotesis Pasang Surut Bintang
Hipotesis pasang surut bintang pertama kali dikemukakan oleh James Jeans pada tahun 1917. Planet dianggap terbentuk karena mendekatnya bintang lain kepada matahari. Keadaan yang hampir bertabrakan menyebabkan tertariknya sejumlah besar materi dari matahari dan bintang lain tersebut oleh gaya pasang surut bersama mereka, yang kemudian terkondensasi menjadi planet.[3] Namun astronom Harold Jeffreys tahun 1929 membantah bahwa tabrakan yang sedemikian itu hampir tidak mungkin terjadi.[3] Demikian pula astronom Henry Norris Russell mengemukakan keberatannya atas hipotesis tersebut.[4]
Hipotesis Kondensasi
Hipotesis kondensasi mulanya dikemukakan oleh astronom Belanda yang bernama G.P. Kuiper (1905-1973) pada tahun 1950. Hipotesis kondensasi menjelaskan bahwa Tata Surya terbentuk dari bola kabut raksasa yang berputar membentuk cakram raksasa.
Hipotesis Bintang Kembar
Hipotesis bintang kembar awalnya dikemukakan oleh Fred Hoyle (1915-2001) pada tahun 1956. Hipotesis mengemukakan bahwa dahulunya Tata Surya kita berupa dua bintang yang hampir sama ukurannya dan berdekatan yang salah satunya meledak meninggalkan serpihan-serpihan kecil. Serpihan itu terperangkap oleh gravitasi bintang yang tidak meledak dan mulai mengelilinginya.
Sejarah penemuan
Lima planet terdekat ke Matahari selain Bumi (Merkurius, Venus, Mars, Yupiter dan Saturnus) telah dikenal sejak zaman dahulu karena mereka semua bisa dilihat dengan mata telanjang. Banyak bangsa di dunia ini memiliki nama sendiri untuk masing-masing planet.
Perkembangan ilmu pengetahuan dan teknologi pengamatan pada lima abad lalu membawa manusia untuk memahami benda-benda langit terbebas dari selubung mitologi. Galileo Galilei (1564-1642) dengan teleskop refraktornya mampu menjadikan mata manusia "lebih tajam" dalam mengamati benda langit yang tidak bisa diamati melalui mata telanjang.
Karena teleskop Galileo bisa mengamati lebih tajam, ia bisa melihat berbagai perubahan bentuk penampakan Venus, seperti Venus Sabit atau Venus Purnama sebagai akibat perubahan posisi Venus terhadap Matahari. Penalaran Venus mengitari Matahari makin memperkuat teori heliosentris, yaitu bahwa matahari adalah pusat alam semesta, bukan Bumi, yang sebelumnya digagas oleh Nicolaus Copernicus (1473-1543). Susunan heliosentris adalah Matahari dikelilingi oleh Merkurius hingga Saturnus.


Model heliosentris dalam manuskrip Copernicus.
Teleskop Galileo terus disempurnakan oleh ilmuwan lain seperti Christian Huygens (1629-1695) yang menemukan Titan, satelit Saturnus, yang berada hampir 2 kali jarak orbit Bumi-Yupiter.
Perkembangan teleskop juga diimbangi pula dengan perkembangan perhitungan gerak benda-benda langit dan hubungan satu dengan yang lain melalui Johannes Kepler (1571-1630) dengan Hukum Kepler. Dan puncaknya, Sir Isaac Newton (1642-1727) dengan hukum gravitasi. Dengan dua teori perhitungan inilah yang memungkinkan pencarian dan perhitungan benda-benda langit selanjutnya
Pada 1781, William Herschel (1738-1822) menemukan Uranus. Perhitungan cermat orbit Uranus menyimpulkan bahwa planet ini ada yang mengganggu. Neptunus ditemukan pada Agustus 1846. Penemuan Neptunus ternyata tidak cukup menjelaskan gangguan orbit Uranus. Pluto kemudian ditemukan pada 1930.
Pada saat Pluto ditemukan, ia hanya diketahui sebagai satu-satunya objek angkasa yang berada setelah Neptunus. Kemudian pada 1978, Charon, satelit yang mengelilingi Pluto ditemukan, sebelumnya sempat dikira sebagai planet yang sebenarnya karena ukurannya tidak berbeda jauh dengan Pluto.
Para astronom kemudian menemukan sekitar 1.000 objek kecil lainnya yang letaknya melampaui Neptunus (disebut objek trans-Neptunus), yang juga mengelilingi Matahari. Di sana mungkin ada sekitar 100.000 objek serupa yang dikenal sebagai Objek Sabuk Kuiper (Sabuk Kuiper adalah bagian dari objek-objek trans-Neptunus). Belasan benda langit termasuk dalam Objek Sabuk Kuiper di antaranya Quaoar (1.250 km pada Juni 2002), Huya (750 km pada Maret 2000), Sedna (1.800 km pada Maret 2004), Orcus, Vesta, Pallas, Hygiea, Varuna, dan 2003 EL61 (1.500 km pada Mei 2004).
Penemuan 2003 EL61 cukup menghebohkan karena Objek Sabuk Kuiper ini diketahui juga memiliki satelit pada Januari 2005 meskipun berukuran lebih kecil dari Pluto. Dan puncaknya adalah penemuan UB 313 (2.700 km pada Oktober 2003) yang diberi nama oleh penemunya Xena. Selain lebih besar dari Pluto, objek ini juga memiliki satelit.
Struktur


Perbanding relatif massa planet. Yupiter adalah 71% dari total dan Saturnus 21%. Merkurius dan Mars, yang total bersama hanya kurang dari 0.1% tidak nampak dalam diagram di atas.


Orbit-orbit Tata Surya dengan skala yang sesungguhnya









Illustrasi skala
Komponen utama sistem Tata Surya adalah matahari, sebuah bintang deret utama kelas G2 yang mengandung 99,86 persen massa dari sistem dan mendominasi seluruh dengan gaya gravitasinya.[5] Yupiter dan Saturnus, dua komponen terbesar yang mengedari matahari, mencakup kira-kira 90 persen massa selebihnya.[c]
Hampir semua objek-objek besar yang mengorbit matahari terletak pada bidang edaran bumi, yang umumnya dinamai ekliptika. Semua planet terletak sangat dekat pada ekliptika, sementara komet dan objek-objek sabuk Kuiper biasanya memiliki beda sudut yang sangat besar dibandingkan ekliptika.
Planet-planet dan objek-objek Tata Surya juga mengorbit mengelilingi matahari berlawanan dengan arah jarum jam jika dilihat dari atas kutub utara matahari, terkecuali Komet Halley.
Hukum Gerakan Planet Kepler menjabarkan bahwa orbit dari objek-objek Tata Surya sekeliling matahari bergerak mengikuti bentuk elips dengan matahari sebagai salah satu titik fokusnya. Objek yang berjarak lebih dekat dari matahari (sumbu semi-mayor-nya lebih kecil) memiliki tahun waktu yang lebih pendek. Pada orbit elips, jarak antara objek dengan matahari bervariasi sepanjang tahun. Jarak terdekat antara objek dengan matahari dinamai perihelion, sedangkan jarak terjauh dari matahari dinamai aphelion. Semua objek Tata Surya bergerak tercepat di titik perihelion dan terlambat di titik aphelion. Orbit planet-planet bisa dibilang hampir berbentuk lingkaran, sedangkan komet, asteroid dan objek sabuk Kuiper kebanyakan orbitnya berbentuk elips.
Untuk mempermudah representasi, kebanyakan diagram Tata Surya menunjukan jarak antara orbit yang sama antara satu dengan lainnya. Pada kenyataannya, dengan beberapa perkecualian, semakin jauh letak sebuah planet atau sabuk dari matahari, semakin besar jarak antara objek itu dengan jalur edaran orbit sebelumnya. Sebagai contoh, Venus terletak sekitar sekitar 0,33 satuan astronomi (SA) lebih dari Merkurius[d], sedangkan Saturnus adalah 4,3 SA dari Yupiter, dan Neptunus terletak 10,5 SA dari Uranus. Beberapa upaya telah dicoba untuk menentukan korelasi jarak antar orbit ini (hukum Titus-Bode), tetapi sejauh ini tidak satu teori pun telah diterima.
Hampir semua planet-planet di Tata Surya juga memiliki sistem sekunder. Kebanyakan adalah benda pengorbit alami yang disebut satelit, atau bulan. Beberapa benda ini memiliki ukuran lebih besar dari planet. Hampir semua satelit alami yang paling besar terletak di orbit sinkron, dengan satu sisi satelit berpaling ke arah planet induknya secara permanen. Empat planet terbesar juga memliki cincin yang berisi partikel-partikel kecil yang mengorbit secara serempak.


Terminologi
Secara informal, Tata Surya dapat dibagi menjadi tiga daerah. Tata Surya bagian dalam mencakup empat planet kebumian dan sabuk asteroid utama. Pada daerah yang lebih jauh, Tata Surya bagian luar, terdapat empat gas planet raksasa.[6] Sejak ditemukannya Sabuk Kuiper, bagian terluar Tata Surya dianggap wilayah berbeda tersendiri yang meliputi semua objek melampaui Neptunus.[7]
Secara dinamis dan fisik, objek yang mengorbit matahari dapat diklasifikasikan dalam tiga golongan: planet, planet kerdil, dan benda kecil Tata Surya. Planet adalah sebuah badan yang mengedari matahari dan mempunyai massa cukup besar untuk membentuk bulatan diri dan telah membersihkan orbitnya dengan menginkorporasikan semua objek-objek kecil di sekitarnya. Dengan definisi ini, Tata Surya memiliki delapan planet: Merkurius, Venus, Bumi, Mars, Yupiter, Saturnus, dan Neptunus. Pluto telah dilepaskan status planetnya karena tidak dapat membersihkan orbitnya dari objek-objek Sabuk Kuiper.[8] Planet kerdil adalah benda angkasa bukan satelit yang mengelilingi matahari, mempunyai massa yang cukup untuk bisa membentuk bulatan diri tetapi belum dapat membersihkan daerah sekitarnya.[8] Menurut definisi ini, Tata Surya memiliki lima buah planet kerdil: Ceres, Pluto, Haumea, Makemake, dan Eris.[9] Objek lain yang mungkin akan diklasifikasikan sebagai planet kerdil adalah: Sedna, Orcus, dan Quaoar. Planet kerdil yang memiliki orbit di daerah trans-Neptunus biasanya disebut "plutoid".[10] Sisa objek-objek lain berikutnya yang mengitari matahari adalah benda kecil Tata Surya.[8]
Ilmuwan ahli planet menggunakan istilah gas, es, dan batu untuk mendeskripsi kelas zat yang terdapat di dalam Tata Surya. Batu digunakan untuk menamai bahan bertitik lebur tinggi (lebih besar dari 500 K), sebagai contoh silikat. Bahan batuan ini sangat umum terdapat di Tata Surya bagian dalam, merupakan komponen pembentuk utama hampir semua planet kebumian dan asteroid. Gas adalah bahan-bahan bertitik lebur rendah seperti atom hidrogen, helium, dan gas mulia, bahan-bahan ini mendominasi wilayah tengah Tata Surya, yang didominasi oleh Yupiter dan Saturnus. Sedangkan es, seperti air, metana, amonia dan karbon dioksida,[11] memiliki titik lebur sekitar ratusan derajat kelvin. Bahan ini merupakan komponen utama dari sebagian besar satelit planet raksasa. Ia juga merupakan komponen utama Uranus dan Neptunus (yang sering disebut "es raksasa"), serta berbagai benda kecil yang terletak di dekat orbit Neptunus.[12]
Istilah volatiles mencakup semua bahan bertitik didih rendah (kurang dari ratusan kelvin), yang termasuk gas dan es; tergantung pada suhunya, 'volatiles' dapat ditemukan sebagai es, cairan, atau gas di berbagai bagian Tata Surya.




Zona planet


Zona Tata Surya yang meliputi, planet bagian dalam, sabuk asteroid, planet bagian luar, dan sabuk Kuiper. (Gambar tidak sesuai skala)
Di zona planet dalam, Matahari adalah pusat Tata Surya dan letaknya paling dekat dengan planet Merkurius (jarak dari matahari 57,9 × 106 km, atau 0,39 SA), Venus (108,2 × 106 km, 0,72 SA), Bumi (149,6 × 106 km, 1 SA) dan Mars (227,9 × 106 km, 1,52 SA). Ukuran diameternya antara 4.878 km dan 12.756 km, dengan massa jenis antara 3,95 g/cm3 dan 5,52 g/cm3.
Antara Mars dan Yupiter terdapat daerah yang disebut sabuk asteroid, kumpulan batuan metal dan mineral. Kebanyakan asteroid-asteroid ini hanya berdiameter beberapa kilometer (lihat: Daftar asteroid), dan beberapa memiliki diameter 100 km atau lebih. Ceres, bagian dari kumpulan asteroid ini, berukuran sekitar 960 km dan dikategorikan sebagai planet kerdil. Orbit asteroid-asteroid ini sangat eliptis, bahkan beberapa menyimpangi Merkurius (Icarus) dan Uranus (Chiron).
Pada zona planet luar, terdapat planet gas raksasa Yupiter (778,3 × 106 km, 5,2 SA), Uranus (2,875 × 109 km, 19,2 SA) dan Neptunus (4,504 × 109 km, 30,1 SA) dengan massa jenis antara 0,7 g/cm3 dan 1,66 g/cm3.
Jarak rata-rata antara planet-planet dengan matahari bisa diperkirakan dengan menggunakan baris matematis Titus-Bode. Regularitas jarak antara jalur edaran orbit-orbit ini kemungkinan merupakan efek resonansi sisa dari awal terbentuknya Tata Surya. Anehnya, planet Neptunus tidak muncul di baris matematis Titus-Bode, yang membuat para pengamat berspekulasi bahwa Neptunus merupakan hasil tabrakan kosmis.



Matahari


Matahari dilihat dari spektrum sinar-X
Matahari adalah bintang induk Tata Surya dan merupakan komponen utama sistem Tata Surya ini. Bintang ini berukuran 332.830 massa bumi. Massa yang besar ini menyebabkan kepadatan inti yang cukup besar untuk bisa mendukung kesinambungan fusi nuklir dan menyemburkan sejumlah energi yang dahsyat. Kebanyakan energi ini dipancarkan ke luar angkasa dalam bentuk radiasi eletromagnetik, termasuk spektrum optik.
Matahari dikategorikan ke dalam bintang kerdil kuning (tipe G V) yang berukuran tengahan, tetapi nama ini bisa menyebabkan kesalahpahaman, karena dibandingkan dengan bintang-bintang yang ada di dalam galaksi Bima Sakti, matahari termasuk cukup besar dan cemerlang. Bintang diklasifikasikan dengan diagram Hertzsprung-Russell, yaitu sebuah grafik yang menggambarkan hubungan nilai luminositas sebuah bintang terhadap suhu permukaannya. Secara umum, bintang yang lebih panas akan lebih cemerlang. Bintang-bintang yang mengikuti pola ini dikatakan terletak pada deret utama, dan matahari letaknya persis di tengah deret ini. Akan tetapi, bintang-bintang yang lebih cemerlang dan lebih panas dari matahari adalah langka, sedangkan bintang-bintang yang lebih redup dan dingin adalah umum.[13]
Dipercayai bahwa posisi matahari pada deret utama secara umum merupakan "puncak hidup" dari sebuah bintang, karena belum habisnya hidrogen yang tersimpan untuk fusi nuklir. Saat ini Matahari tumbuh semakin cemerlang. Pada awal kehidupannya, tingkat kecemerlangannya adalah sekitar 70 persen dari kecermelangan sekarang. [14]
Matahari secara metalisitas dikategorikan sebagai bintang "populasi I". Bintang kategori ini terbentuk lebih akhir pada tingkat evolusi alam semesta, sehingga mengandung lebih banyak unsur yang lebih berat daripada hidrogen dan helium ("metal" dalam sebutan astronomi) dibandingkan dengan bintang "populasi II".[15] Unsur-unsur yang lebih berat daripada hidrogen dan helium terbentuk di dalam inti bintang purba yang kemudian meledak. Bintang-bintang generasi pertama perlu punah terlebih dahulu sebelum alam semesta dapat dipenuhi oleh unsur-unsur yang lebih berat ini. Bintang-bintang tertua mengandung sangat sedikit metal, sedangkan bintang baru mempunyai kandungan metal yang lebih tinggi. Tingkat metalitas yang tinggi ini diperkirakan mempunyai pengaruh penting pada pembentukan sistem Tata Surya, karena terbentuknya planet adalah hasil penggumpalan metal.[16]
Medium antarplanet


Lembar aliran heliosfer, karena gerak rotasi magnetis matahari terhadap medium antarplanet.
Disamping cahaya, matahari juga secara berkesinambungan memancarkan semburan partikel bermuatan (plasma) yang dikenal sebagai angin matahari. Semburan partikel ini menyebar keluar kira-kira pada kecepatan 1,5 juta kilometer per jam,[17] menciptakan atmosfer tipis (heliosfer) yang merambah Tata Surya paling tidak sejauh 100 SA (lihat juga heliopause). Kesemuanya ini disebut medium antarplanet. Badai geomagnetis pada permukaan matahari, seperti semburan matahari (solar flares) dan pengeluaran massa korona (coronal mass ejection) menyebabkan gangguan pada heliosfer, menciptakan cuaca ruang angkasa.[18] Struktur terbesar dari heliosfer dinamai lembar aliran heliosfer (heliospheric current sheet), sebuah spiral yang terjadi karena gerak rotasi magnetis matahari terhadap medium antarplanet.[19][20] Medan magnet bumi mencegah atmosfer bumi berinteraksi dengan angin matahari. Venus dan Mars yang tidak memiliki medan magnet, atmosfernya habis terkikis ke luar angkasa.[21] Interaksi antara angin matahari dan medan magnet bumi menyebabkan terjadinya aurora, yang dapat dilihat dekat kutub magnetik bumi.
Heliosfer juga berperan melindungi Tata Surya dari sinar kosmik yang berasal dari luar Tata Surya. Medan magnet planet-planet menambah peran perlindungan selanjutnya. Densitas sinar kosmik pada medium antarbintang dan kekuatan medan magnet matahari mengalami perubahan pada skala waktu yang sangat panjang, sehingga derajat radiasi kosmis di dalam Tata Surya sendiri adalah bervariasi, meski tidak diketahui seberapa besar.[22]
Medium antarplanet juga merupakan tempat beradanya paling tidak dua daerah mirip piringan yang berisi debu kosmis. Yang pertama, awan debu zodiak, terletak di Tata Surya bagian dalam dan merupakan penyebab cahaya zodiak. Ini kemungkinan terbentuk dari tabrakan dalam sabuk asteroid yang disebabkan oleh interaksi dengan planet-planet.[23] Daerah kedua membentang antara 10 SA sampai sekitar 40 SA, dan mungkin disebabkan oleh tabrakan yang mirip tetapi tejadi di dalam Sabuk Kuiper.[24][25]

Tata Surya bagian dalam
Tata Surya bagian dalam adalah nama umum yang mencakup planet kebumian dan asteroid. Terutama terbuat dari silikat dan logam, objek dari Tata Surya bagian dalam melingkup dekat dengan matahari, radius dari seluruh daerah ini lebih pendek dari jarak antara Yupiter dan Saturnus.
Planet-planet bagian dalam
Artikel utama untuk bagian ini adalah: Planet kebumian


Planet-planet bagian dalam. Dari kiri ke kanan: Merkurius, Venus, Bumi, dan Mars (ukuran menurut skala)
Empat planet bagian dalam atau planet kebumian (terrestrial planet) memiliki komposisi batuan yang padat, hampir tidak mempunyai atau tidak mempunyai bulan dan tidak mempunyai sistem cincin. Komposisi Planet-planet ini terutama adalah mineral bertitik leleh tinggi, seperti silikat yang membentuk kerak dan selubung, dan logam seperti besi dan nikel yang membentuk intinya. Tiga dari empat planet ini (Venus, Bumi dan Mars) memiliki atmosfer, semuanya memiliki kawah meteor dan sifat-sifat permukaan tektonis seperti gunung berapi dan lembah pecahan. Planet yang letaknya di antara matahari dan bumi (Merkurius dan Venus) disebut juga planet inferior.
Merkurius
Merkurius (0,4 SA) adalah planet terdekat dari matahari serta juga terkecil (0,055 massa bumi). Merkurius tidak memiliki satelit alami dan ciri geologisnya di samping kawah meteorid yang diketahui adalah lobed ridges atau rupes, kemungkinan terjadi karena pengerutan pada perioda awal sejarahnya.[26] Atmosfer Merkurius yang hampir bisa diabaikan terdiri dari atom-atom yang terlepas dari permukaannya karena semburan angin matahari.[27] Besarnya inti besi dan tipisnya kerak Merkurius masih belum bisa dapat diterangkan. Menurut dugaan hipotesa lapisan luar planet ini terlepas setelah terjadi tabrakan raksasa, dan perkembangan ("akresi") penuhnya terhambat oleh energi awal matahari.[28][29]
Venus
Venus (0,7 SA) berukuran mirip bumi (0,815 massa bumi). Dan seperti bumi, planet ini memiliki selimut kulit silikat yang tebal dan berinti besi, atmosfernya juga tebal dan memiliki aktivitas geologi. Akan tetapi planet ini lebih kering dari bumi dan atmosfernya sembilan kali lebih padat dari bumi. Venus tidak memiliki satelit. Venus adalah planet terpanas dengan suhu permukaan mencapai 400 °C, kemungkinan besar disebabkan jumlah gas rumah kaca yang terkandung di dalam atmosfer.[30] Sejauh ini aktivitas geologis Venus belum dideteksi, tetapi karena planet ini tidak memiliki medan magnet yang bisa mencegah habisnya atmosfer, diduga sumber atmosfer Venus berasal dari gunung berapi. [31]
Bumi
Bumi adalah planet bagian dalam yang terbesar dan terpadat, satu-satunya yang diketahui memiliki aktivitas geologi dan satu-satunya planet yang diketahui memiliki mahluk hidup. Hidrosfer-nya yang cair adalah khas di antara planet-planet kebumian dan juga merupakan satu-satunya planet yang diobservasi memiliki lempeng tektonik. Atmosfer bumi sangat berbeda dibandingkan planet-planet lainnya, karena dipengaruhi oleh keberadaan mahluk hidup yang menghasilkan 21% oksigen.[32] Bumi memiliki satu satelit, bulan, satu-satunya satelit besar dari planet kebumian di dalam Tata Surya.
Mars
Mars (1,5 SA) berukuran lebih keci dari bumi dan Venus (0,107 massa bumi). Planet ini memiliki atmosfer tipis yang kandungan utamanya adalah karbon dioksida. Permukaan Mars yang dipenuhi gunung berapi raksasa seperti Olympus Mons dan lembah retakan seperti Valles marineris, menunjukan aktivitas geologis yang terus terjadi sampai baru belakangan ini. Warna merahnya berasal dari warna karat tanahnya yang kaya besi.[33] Mars mempunyai dua satelit alami kecil (Deimos dan Phobos) yang diduga merupakan asteroid yang terjebak gravitasi Mars.[34]
Sabuk asteroid


Sabuk asteroid utama dan asteroid Troya
Asteroid secara umum adalah obyek Tata Surya yang terdiri dari batuan dan mineral logam beku. [35]
Sabuk asteroid utama terletak di antara orbit Mars dan Yupiter, berjarak antara 2,3 dan 3,3 SA dari matahari, diduga merupakan sisa dari bahan formasi Tata Surya yang gagal menggumpal karena pengaruh gravitasi Yupiter. [36]
Gradasi ukuran asteroid adalah ratusan kilometer sampai mikroskopis. Semua asteroid, kecuali Ceres yang terbesar, diklasifikasikan sebagai benda kecil Tata Surya. Beberapa asteroid seperti Vesta dan Hygieia mungkin akan diklasifikasi sebagai planet kerdil jika terbukti telah mencapai kesetimbangan hidrostatik. [37]
Sabuk asteroid terdiri dari beribu-ribu, mungkin jutaan objek yang berdiameter satu kilometer.[38] Meskipun demikian, massa total dari sabuk utama ini tidaklah lebih dari seperseribu massa bumi.[39] Sabuk utama tidaklah rapat, kapal ruang angkasa secara rutin menerobos daerah ini tanpa mengalami kecelakaan. Asteroid yang berdiameter antara 10 dan 10-4 m disebut meteorid. [40]
Ceres


Ceres
Ceres (2,77 SA) adalah benda terbesar di sabuk asteroid dan diklasifikasikan sebagai planet kerdil. Diameternya adalah sedikit kurang dari 1000 km, cukup besar untuk memiliki gravitasi sendiri untuk menggumpal membentuk bundaran. Ceres dianggap sebagai planet ketika ditemukan pada abad ke 19, tetapi di-reklasifikasi menjadi asteroid pada tahun 1850an setelah observasi lebih lanjut menemukan beberapa asteroid lagi.[41] Ceres direklasifikasi lanjut pada tahun 2006 sebagai planet kerdil.


Kelompok asteroid
Asteroid pada sabuk utama dibagi menjadi kelompok dan keluarga asteroid bedasarkan sifat-sifat orbitnya. Bulan asteroid adalah asteroid yang mengedari asteroid yang lebih besar. Mereka tidak mudah dibedakan dari bulan-bulan planet, kadang kala hampir sebesar pasangannya. Sabuk asteroid juga memiliki komet sabuk utama yang mungkin merupakan sumber air bumi. [42]
Asteroid-asteroid Trojan terletak di titik L4 atau L5 Yupiter (daerah gravitasi stabil yang berada di depan dan belakang sebuah orbit planet), sebutan "trojan" sering digunakan untuk objek-objek kecil pada Titik Langrange dari sebuah planet atau satelit. Kelompok Asteroid Hilda terletak di orbit resonansi 2:3 dari Yupiter, yang artinya kelompok ini mengedari matahari tiga kali untuk setiak dua edaran Yupiter.
Bagian dalam Tata Surya juga dipenuhi oleh asteroid liar, yang banyak memotong orbit-orbit planet planet bagian dalam.
Tata Surya bagian luar
Pada bagian luar dari Tata Surya terdapat gas-gas raksasa dengan satelit-satelitnya yang berukuran planet. Banyak komet berperioda pendek termasuk beberapa Centaur, juga berorbit di daerah ini. Badan-badan padat di daerah ini mengandung jumlah volatil (contoh: air, amonia, metan, yang sering disebut "es" dalam peristilahan ilmu keplanetan) yang lebih tinggi dibandingkan planet batuan di bagian dalam Tata Surya.
Planet-planet luar


Raksasa-raksasa gas dalam Tata Surya dan Matahari, berdasarkan skala
Keempat planet luar, yang disebut juga planet raksasa gas (gas giant), atau planet jovian, secara keseluruhan mencakup 99 persen massa yang mengorbit matahari. Yupiter dan Saturnus sebagian besar mengandung hidrogen dan helium; Uranus dan Neptunus memiliki proporsi es yang lebih besar. Para astronom mengusulkan bahwa keduanya dikategorikan sendiri sebagai raksasa es.[43] Keempat raksasa gas ini semuanya memiliki cincin, meski hanya sistem cincin Saturnus yang dapat dilihat dengan mudah dari bumi.

Yupiter
Yupiter (5,2 SA), dengan 318 kali massa bumi, adalah 2,5 kali massa dari gabungan seluruh planet lainnya. Kandungan utamanya adalah hidrogen dan helium. Sumber panas di dalam Yupiter menyebabkan timbulnya beberapa ciri semi-permanen pada atmosfernya, sebagai contoh pita pita awan dan Bintik Merah Raksasa. Sejauh yang diketahui Yupiter memiliki 63 satelit. Empat yang terbesar, Ganymede, Callisto, Io, dan Europa menampakan kemiripan dengan planet kebumian, seperti gunung berapi dan inti yang panas.[44] Ganymede, yang merupakan satelit terbesar di Tata Surya, berukuran lebih besar dari Merkurius.
Saturnus
Saturnus (9,5 SA) yang dikenal dengan sistem cincinnya, memiliki beberapa kesamaan dengan Yupiter, sebagai contoh komposisi atmosfernya. Meskipun Saturnus hanya sebesar 60% volume Yupiter, planet ini hanya seberat kurang dari sepertiga Yupiter atau 95 kali massa bumi, membuat planet ini sebuah planet yang paling tidak padat di Tata Surya. Saturnus memiliki 60 satelit yang diketahui sejauh ini (dan 3 yang belum dipastikan) dua di antaranya Titan dan Enceladus, menunjukan activitas geologis, meski hampir terdiri hanya dari es saja.[45] Titan berukuran lebih besar dari Merkurius dan merupakan satu-satunya satelit di Tata Surya yang memiliki atmosfer yang cukup berarti.
Uranus
Uranus (19,6 SA) yang memiliki 14 kali massa bumi, adalah planet yang paling ringan di antara planet-planet luar. Planet ini memiliki kelainan ciri orbit. Uranus mengedari matahari dengan bujkuran poros 90 derajad pada ekliptika. Planet ini memiliki inti yang sangat dingin dibandingkan gas raksasa lainnya dan hanya sedikit memancarkan energi panas.[46] Uranus memiliki 27 satelit yang diketahui, yang terbesar adalah Titania, Oberon, Umbriel, Ariel dan Miranda.
Neptunus
Neptunus (30 SA) meskipun sedikit lebih kecil dari Uranus, memiliki 17 kali massa bumi, sehingga membuatnya lebih padat. Planet ini memancarkan panas dari dalam tetapi tidak sebanyak Yupiter atau Saturnus.[47] Neptunus memiliki 13 satelit yang diketahui. Yang terbesar, Triton, geologinya aktif, dan memiliki geyser nitrogen cair.[48] Triton adalah satu-satunya satelit besar yang orbitnya terbalik arah (retrogade). Neptunus juga didampingi beberapa planet minor pada orbitnya, yang disebut Trojan Neptunus. Benda-benda ini memiliki resonansi 1:1 dengan Neptunus.


Komet


Komet Hale-Bopp
Komet adalah badan Tata Surya kecil, biasanya hanya berukuran beberapa kilometer, dan terbuat dari es volatil. Badan-badan ini memiliki eksentrisitas orbit tinggi, secara umum perihelion-nya terletak di planet-planet bagian dalam dan letak aphelion-nya lebih jauh dari Pluto. Saat sebuah komet memasuki Tata Surya bagian dalam, dekatnya jarak dari matahari menyebabkan permukaan esnya bersumblimasi dan berionisasi, yang menghasilkan koma, ekor gas dan debu panjang, yang sering dapat dilihat dengan mata telanjang.
Komet berperioda pendek memiliki kelangsungan orbit kurang dari dua ratus tahun. Sedangkan komet berperioda panjang memiliki orbit yang berlangsung ribuan tahun. Komet berperioda pendek dipercaya berasal dari Sabuk Kuiper, sedangkan komet berperioda panjang, seperti Hale-bopp, berasal dari Awan Oort. Banyak kelompok komet, seperti Kreutz Sungrazers, terbentuk dari pecahan sebuah induk tunggal.[49] Sebagian komet berorbit hiperbolik mungking berasal dari luar Tata Surya, tetapi menentukan jalur orbitnya secara pasti sangatlah sulit.[50] Komet tua yang bahan volatilesnya telah habis karena panas matahari sering dikategorikan sebagai asteroid.[51]
Centaur
Centaur adalah benda-benda es mirip komet yang poros semi-majornya lebih besar dari Yupiter (5,5 SA) dan lebih kecil dari Neptunus (30 SA). Centaur terbesar yang diketahui adalah, 10199 Chariklo, berdiameter 250 km.[52] Centaur temuan pertama, 2060 Chiron, juga diklasifikasikan sebagai komet (95P) karena memiliki koma sama seperti komet kalau mendekati matahari.[53] Beberapa astronom mengklasifikasikan Centaurs sebagai objek sabuk Kuiper sebaran-ke-dalam (inward-scattered Kuiper belt objects), seiring dengan sebaran keluar yang bertempat di piringan tersebar (outward-scattered residents of the scattered disc).[54]

Daerah trans-Neptunus


Plot seluruh obyek sabuk Kuiper


Diagram yang menunjukkan pembagian sabuk Kuiper
Daerah yang terletak jauh melampaui Neptunus, atau daerah trans-Neptunus, sebagian besar belum dieksplorasi. Menurut dugaan daerah ini sebagian besar terdiri dari dunia-dunia kecil (yang terbesar memiliki diameter seperlima bumi dan bermassa jauh lebih kecil dari bulan) dan terutama mengandung batu dan es. Daerah ini juga dikenal sebagai daerah luar Tata Surya, meskipun berbagai orang menggunakan istilah ini untuk daerah yang terletak melebihi sabuk asteroid.
Sabuk Kuiper
Sabuk Kuiper adalah sebuah cincin raksasa mirip dengan sabuk asteroid, tetapi komposisi utamanya adalah es. Sabuk ini terletak antara 30 dan 50 SA, dan terdiri dari benda kecil Tata Surya. Meski demikian, objek Kuiper yang terbesar, seperti Quaoar, Varuna, dan Orcus, mungkin akan diklasifikasikan sebagai planet kerdil. Para ilmuwan memperkirakan terdapat sekitar 100.000 objek Sabuk Kuiper yang berdiameter lebih dari 50 km, tetapi diperkirakan massa total Sabuk Kuiper hanya sepersepuluh massa bumi.[55] Banyak objek Kuiper memiliki satelit ganda dan kebanyakan memiliki orbit di luar bidang eliptika.
Sabuk Kuiper secara kasar bisa dibagi menjadi "sabuk klasik" dan resonansi. Resonansi adalah orbit yang terkait pada Neptunus (contoh: dua orbit untuk setiap tiga orbit Neptunus atau satu untuk setiap dua). Resonansi yang pertama bermula pada Neptunus sendiri. Sabuk klasik terdiri dari objek yang tidak memiliki resonansi dengan Neptunus, dan terletak sekitar 39,4 SA sampai 47,7 SA.[56] Anggota dari sabuk klasik diklasifikasikan sebagai cubewanos, setelah anggota jenis pertamanya ditemukan (15760) 1992QB1 [57]
Pluto dan Charon


Pluto dan ketiga bulannya
Pluto (rata-rata 39 SA), sebuah planet kerdil, adalah objek terbesar sejauh ini di Sabuk Kuiper. Ketika ditemukan pada tahun 1930, benda ini dianggap sebagai planet yang kesembilan, definisi ini diganti pada tahun 2006 dengan diangkatnya definisi formal planet. Pluto memiliki kemiringan orbit cukup eksentrik (17 derajat dari bidang ekliptika) dan berjarak 29,7 SA dari matahari pada titik prihelion (sejarak orbit Neptunus) sampai 49,5 SA pada titik aphelion.
Tidak jelas apakah Charon, bulan Pluto yang terbesar, akan terus diklasifikasikan sebagai satelit atau menjadi sebuah planet kerdil juga. Pluto dan Charon, keduanya mengedari titik barycenter gravitasi di atas permukaannya, yang membuat Pluto-Charon sebuah sistem ganda. Dua bulan yang jauh lebih kecil Nix dan Hydra juga mengedari Pluto dan Charon. Pluto terletak pada sabuk resonan dan memiliki 3:2 resonansi dengan Neptunus, yang berarti Pluto mengedari matahari dua kali untuk setiap tiga edaran Neptunus. Objek sabuk Kuiper yang orbitnya memiliki resonansi yang sama disebut plutino.[58]
Haumea dan Makemake
Haumea (rata-rata 43,34 SA) dan Makemake (rata-rata 45,79 SA) adalah dua objek terbesar sejauh ini di dalam sabuk Kuiper klasik. Haumea adalah sebuah objek berbentuk telur dan memiliki dua bulan. Makemake adalah objek paling cemerlang di sabuk Kuiper setelah Pluto. Pada awalnya dinamai 2003 EL61 dan 2005 FY9, pada tahun 2008 diberi nama dan status sebagai planet kerdil. Orbit keduanya berinklinasi jauh lebih membujur dari Pluto (28° dan 29°) [59] dan lain seperti Pluto, keduanya tidak dipengaruhi oleh Neptunus, sebagai bagian dari kelompok Objek Sabuk Kuiper klasik.

Piringan tersebar


Hitam: tersebar; biru: klasik; hijau: resonan


Eris dan satelitnya Dysnomia
Piringan tersebar (scattered disc) berpotongan dengan sabuk Kuiper dan menyebar keluar jauh lebih luas. Daerah ini diduga merupakan sumber komet berperioda pendek. Objek piringan tersebar diduga terlempar ke orbit yang tidak menentu karena pengaruh gravitasi dari gerakan migrasi awal Neptunus. Kebanyakan objek piringan tersebar (scattered disc objects, atau SDO) memiliki perihelion di dalam sabuk Kuiper dan apehelion hampir sejauh 150 SA dari matahari. Orbit OPT juga memiliki inklinasi tinggi pada bidang ekliptika dan sering hampir bersudut siku-siku. Beberapa astronom menggolongkan piringan tersebar hanya sebagai bagian dari sabuk Kuiper dan menjuluki piringan tersebar sebagai "objek sabuk Kuiper tersebar" (scattered Kuiper belt objects).[60]
Eris
Eris (rata-rata 68 SA) adalah objek piringan tersebar terbesar sejauh ini dan menyebabkan mulainya debat tentang definisi planet, karena Eris hanya 5%lebih besar dari Pluto dan memiliki perkiraan diameter sekitar 2.400 km. Eris adalah planet kerdil terbesar yang diketahui dan memiliki satu bulan Dysnomia.[61] Seperti Pluto, orbitnya memiliki eksentrisitas tinggi, dengan titik perihelion 38,2 SA (mirip jarak Pluto ke matahari) dan titik aphelion 97,6 SA dengan bidang ekliptika sangat membujur.
Daerah terjauh
Titik tempat Tata Surya berakhir dan ruang antar bintang mulai tidaklah persis terdefinisi. Batasan-batasan luar ini terbentuk dari dua gaya tekan yang terpisah: angin matahari dan gravitasi matahari. Batasan terjauh pengaruh angin matahari kira kira berjarak empat kali jarak Pluto dan matahari. Heliopause ini disebut sebagai titik permulaan medium antar bintang. Akan tetapi Bola Roche Matahari, jarak efektif pengaruh gravitasi matahari, diperkirakan mencakup sekitar seribu kali lebih jauh.
Heliopause


Voyager memasuki heliosheath
Heliopause dibagi menjadi dua bagian terpisah. Awan angin yang bergerak pada kecepatan 400 km/detik sampai menabrak plasma dari medium ruang antarbintang. Tabrakan ini terjadi pada benturan terminasi yang kira kira terletak di 80-100 SA dari matahari pada daerah lawan angin dan sekitar 200 SA dari matahari pada daerah searah jurusan angin. Kemudian angin melambat dramatis, memampat dan berubah menjadi kencang, membentuk struktur oval yang dikenal sebagai heliosheath, dengan kelakuan mirip seperki ekor komet, mengulur keluar sejauh 40 SA di bagian arah lawan angin dan berkali-kali lipat lebih jauh pada sebelah lainnya. Voyager 1 dan Voyager 2 dilaporkan telah menembus benturan terminasi ini dan memasuki heliosheath, pada jarak 94 dan 84 SA dari matahari. Batasan luar dari heliosfer, heliopause, adalah titik tempat angin matahari berhenti dan ruang antar bintang bermula.
Bentuk dari ujung luar heliosfer kemungkinan dipengaruhi dari dinamika fluida dari interaksi medium antar bintang dan juga medan magnet matahari yang mengarah di sebelah selatan (sehingga memberi bentuk tumpul pada hemisfer utara dengan jarak 9 SA, dan lebih jauh daripada hemisfer selatan. Selebih dari heliopause, pada jarak sekitar 230 SA, terdapat benturan busur, jaluran ombak plasma yang ditinggalkan matahari seiring edarannya berkeliling di Bima Sakti.
Sejauh ini belum ada kapal luar angkasa yang melewati heliopause, sehingga tidaklah mungkin mengetahui kondisi ruang antar bintang lokal dengan pasti. Diharapkan satelit NASA voyager akan menembus heliopause pada sekitar dekade yang akan datang dan mengirim kembali data tingkat radiasi dan angin matahari. Dalam pada itu, sebuah tim yang dibiayai NASA telah mengembangkan konsep "Vision Mission" yang akan khusus mengirimkan satelit penjajak ke heliosfer.

Awan Oort


Gambaran seorang artis tentang Awan Oort
Secara hipotesa, Awan Oort adalah sebuah massa berukuran raksasa yang terdiri dari bertrilion-trillion objek-objek es, dipercaya merupakan sumber komet berperioda panjang. Awan ini menyelubungi matahari pada jarak sekitar 50,000 (sekitar 1 tahun cahaya) sampai sejauh 100,000 (1,87 tahun cahaya). Daerah ini dipercaya mengandung komet yang terlempar dari bagian dalam Tata Surya karena interaksi dengan planet-planet bagian luar. Objek Awan Oort bergerak sangat lambat dan bisa digoncangkan oleh situasi-situasi langka seperti tabrakan, effek gravitasi dari laluan bintang, atau gaya pasang galaksi, gaya pasang yang didorong Bima Sakti.[62][63]
Sedna


Foto teleskop Sedna
90377 Sedna (rata-rata 525,86 SA) adalah sebuah benda kemerahan mirip Pluto dengan orbit raksasa yang sangat eliptis, sekitar 76 SA pada perihelion dan 928 SA pada aphelion dan berjangka orbit 12.050 tahun. Mike Brown, penemu objek ini pada tahun 2003, menegaskan bahwa Sedna tidak merupakan bagian dari piringan tersebar ataupun sabuk Kuiper karena perihelionnya terlalu jauh dari pengaruh migrasi Neptunus. Dia dan beberapa astronom lainnya berpendapat bahwa Sedna adalah objek pertama dari sebuah kelompok baru, yang mungkin juga mencakup 2000 CR105. Sebuah benda bertitik perihelion pada 45 SA, aphelion pada 415 SA, dan berjangka orbit 3.420 tahun. Brown menjuluki kelompok ini "Awan Oort bagian dalam", karena mungkin terbentuk melalui proses yang mirip, meski jauh lebih dekat ke matahari. Kemungkinan besar Sedna adalah sebuah planet kerdil, meski bentuk kebulatannya masih harus ditentukan dengan pasti.
Batasan-batasan
Banyak hal dari Tata Surya kita yang masih belum diketahui. Medan gravitasi matahari diperkirakan mendominasi gaya gravitasi bintang-bintang sekeliling sejauh dua tahun cahaya (125.000 SA). Perkiraan bawah radius Awan Oort, di sisi lain, tidak lebih besar dari 50.000 SA.[64] Sekalipun Sedna telah ditemukan, daerah antara Sabuk Kuiper dan Awan Oort, sebuah daerah yang memiliki radius puluhan ribu SA, bisa dikatakan belum dipetakan. Selain itu, juga ada studi yang sedang berjalan, yang mempelajari daerah antara Merkurius dan matahari.[65] Objek-objek baru mungkin masih akan ditemukan di daerah yang belum dipetakan.
Dimensi
Perbandingan beberapa ukuran penting planet-planet:
Karakteristik Merkurius
Venus
Bumi
Mars
Yupiter
Saturnus
Uranus
Neptunus

Jarak orbit (juta km) (SA)
57,91 (0,39) 108,21 (0,72) 149,60 (1,00) 227,94 (1,52) 778,41 (5,20) 1.426,72 (9,54) 2.870,97 (19,19) 4.498,25 (30,07)
Waktu edaran (tahun) 0,24 (88 hari) 0,62 (224 hari) 1,00 1,88 11,86 29,45 84,02 164,79
Jangka rotasi 58,65 hari 243,02 hari 23 jam 56 menit 24 jam 37 menit 9 jam 55 menit 10 jam 47 menit 17 jam 14 menit 16 jam 7 menit
Eksentrisitas edaran 0,206 0,007 0,017 0,093 0,048 0,054 0,047 0,009
Sudut inklinasi orbit (°)
7,00 3,39 0,00 1,85 1,31 2,48 0,77 1,77
Sudut inklinasi ekuator terhadap orbit (°) 0,00 177,36 23,45 25,19 3,12 26,73 97,86 29,58
Diameter ekuator (km) 4.879 12.104 12.756 6.805 142.984 120.536 51.118 49.528
Massa (dibanding Bumi) 0,06 0,81 1,00 0,15 317,8 95,2 14,5 17,1
Kepadatan menengah (g/cm³) 5,43 5,24 5,52 3,93 1,33 0,69 1,27 1,64
Suhu permukaan
min.
menengah
maks.
-173 °C
+167 °C
+427 °C
+437 °C
+464 °C
+497 °C
-89 °C
+15 °C
+58 °C
-133 °C
-55 °C
+27 °C

-108 °C

-139 °C

-197 °C

-201 °C
Konteks galaksi


Lokasi Tata Surya di dalam galaksi Bima Sakti


Lukisan artist dari Gelembung Lokal
Tata Surya terletak di galaksi Bima Sakti, sebuah galaksi spiral yang berdiameter sekitar 100.000 tahun cahaya dan memiliki sekitar 200 milyar bintang.[66] Matahari berlokasi di salah satu lengan spiral galaksi yang disebut Lengan Orion.[67] Letak Matahari berjarak antara 25.000 dan 28.000 tahun cahaya dari pusat galaksi, dengan kecepatan orbit mengelilingi pusat galaksi sekitar 2.200 kilometer per detik. Setiap revolusinya berjangka 225-250 juta tahun. Waktu revolusi ini dikenal sebagai tahun galaksi Tata Surya.[68] Apex matahari, arah jalur matahari di ruang semesta, dekat letaknya dengan konstelasi Herkules terarah pada posisi akhir bintang Vega.[69]
Lokasi Tata Surya di dalam galaksi berperan penting dalam evolusi kehidupan di Bumi. Bentuk orbit bumi adalah mirip lingkaran dengan kecepatan hampir sama dengan lengan spiral galaksi, karenanya bumi sangat jarang menerobos jalur lengan. Lengan spiral galaksi memiliki konsentrasi supernova tinggi yang berpotensi bahaya sangat besar terhadap kehidupan di Bumi. Situasi ini memberi Bumi jangka stabilitas yang panjang yang memungkinkan evolusi kehidupan.[70] Tata Surya juga terletak jauh dari daerah padat bintang di pusak galaksi. Di daerah pusat, tarikan gravitasi bintang-bintang yang berdekatan bisa menggoyang benda-benda di Awan Oort dan menembakan komet-komet ke bagian dalam Tata Surya. Ini bisa menghasilkan potensi tabrakan yang merusak kehidupan di Bumi. Intensitas radiasi dari pusat galaksi juga mempengaruhi perkembangan bentuk hidup tingkat tinggi. Walaupun demikian, para ilmuwan berhipotesa bahwa pada lokasi Tata Surya sekarang ini supernova telah mempengaruhi kehidupan di Bumi pada 35.000 tahun terakhir dengan melemparkan pecahan-pecahan inti bintang ke arah matahari dalam bentuk debu radiasi atau bahan yang lebih besar lainnya, seperti berbagai benda mirip komet. [71]Daerah lingkungan sekitar
Lingkungan galaksi terdekat dari Tata Surya adalah sesuatu yang dinamai Awan Antarbintang Lokal, yaitu wilayah berawan tebal yang dikenal dengan nama Gelembung Lokal, yang terletak di tengah-tengah wilayah yang jarang. Gelembung Lokal ini berbentuk rongga mirip jam pasir yang terdapat pada medium antarbintang, dan berukuran sekitar 300 tahun cahaya. Gelembung ini penuh ditebari plasma bersuhu tinggi yang mungkin berasal dari beberapa supernova yang belum lama terjadi.[72]
Di dalam jarak sepuluh tahun cahaya (95 triliun km) dari matahari, jumlah bintang relatif sedikit. Bintang yang terdekat adalah sistem kembar tiga Alpha Centauri, yang berjarak 4,4 tahun cahaya. Alpha Centauri A dan B merupakan bintang ganda mirip dengan matahari, sedangkan Centauri C adalah kerdil merah (disebut juga Proxima Centauri) yang mengedari kembaran ganda pertama pada jarak 0,2 tahun cahaya. Bintang-bintang terdekat berikutnya adalah sebuah kerdil merah yang dinamai Bintang Barnard (5,9 tahun cahaya), Wolf 359 (7,8 tahun cahaya) dan Lalande 21185 (8,3 tahun cahaya). Bintang terbesar dalam jarak sepuluh tahun cahaya adalah Sirius, sebuah bintang cemerlang dikategori 'urutan utama' kira-kira bermassa dua kali massa matahari, dan dikelilingi oleh sebuah kerdil putih bernama Sirius B. Keduanya berjarak 8,6 tahun cahaya. Sisa sistem selebihnya yang terletak di dalam jarak 10 tahun cahaya adalah sistem bintang ganda kerdil merah Luyten 726-8 (8,7 tahun cahaya) dan sebuah kerdial merah bernama Ross 154 (9,7 tahun cahaya).[73] Bintang tunggal terdekat yang mirip matahari adalah Tau Ceti, yang terletak 11,9 tahun cahaya. Bintang ini kira-kira berukuran 80% berat matahari, tetapi kecemerlangannya (luminositas) hanya 60%.[74] Planet luar Tata Surya terdekat dari matahari, yang diketahui sejauh ini adalah di bintang Epsilon Eridani, sebuah bintang yang sedikit lebih pudar dan lebih merah dibandingkan mathari. Letaknya sekitar 10,5 tahun cahaya. Planet bintang ini yang sudah dipastikan , bernama Epsilon Eridani b, kurang lebih berukuran 1,5 kali massa Yupiter dan mengelilingi induk bintangnya dengan jarak 6,9 tahun cahaya.[75]